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Kalman Filtering, Smoothing, and Recursive Robot
Arm Forward and Inverse Dynamics

GUILLERMO RODRIGUEZ

Abstract—The inverse and forward dynamics problems for multilink
serial manipulators are solved by using recursive techniques from linear
filtering and smoothing theory. The pivotal step is to cast the system
dynamics and kinematics as a two-point boundary-value problem.
Solution of this problem leads to filtering and smoothing techniques
similar to the equations of Kalman filtering and Bryson-Frazier fixed
time-interval smoothing. The solutions prescribe an inward filtering
recursion to compute a sequence of constraint moments and forces
followed by an outward recursion to determine a corresponding sequence
of angular and linear accelerations. An inward recursion refers to a
sequential technique that starts at the tip of the terminal link and proceeds
inwardly through all of the links until it reaches the base. Similarly, an
outward recursion starts at the base and propagates out toward the tip.
The recursive solutions are O(N), in the sense that the number of
required computations only grows linearly with the number of links. A
technique is provided to compute the relative angular accelerations at all
of the joints from the applied external joint moments (and vice versa). It
also provides an approach to evaluate recursively the composite multilink
system inertia matrix and its inverse, The main contribution is to establish
the equivalence between the filtering and smoothing techniques arising in
state estimation theory and the methods of recursive robot dynamics. The
filtering and smoothing architecture is very easy to understand and
implement. This provides for a better understanding of robot dynamics.
While the focus is not on exploring computational efficiency, some initial
results in that direction are obtained. This is done by comparing
performance with other recursive methods for a planar chain example.
The analytical foundation is laid for the potential use of filtering and
smoothing techniques in robot dynamics and control.

1. INTRODUCTION

HE CENTRAL theme of this paper is to investigate the

use of filtering and smoothing techniques in studying
robot dynamics. In particular, the paper shows that the
recursive difference equations of Kalman filtering [1] and
Bryson-Frazier fixed time-interval smoothing {2}, arising in
the state estimation theory [3] for linear state space systems,
can be used to solve the problems of serial manipulator inverse
and forward dynamics. A more detailed development of the
results of this paper is contained in [4], [5]. The configuration
analyzed is that of a joint connected N-link serial manipulator
attached to an immobile base. The joints are assumed to be
rotational, although extension to configurations with joints
allowing translation is simple. The inverse dynamics problem
is to find the joint moments to achieve a set of prescribed
accelerations. The forward dynamics problem is to determine
the joint accelerations resulting from a set of applied joint
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moments. Typically, inverse dynamics solutions are useful for
control design, whereas forward dynamics solutions are useful
for system simulation.

The primary motivation for using filtering and smoothing
techniques is to provide a better means to formulate, analyze,
and understand spatial recursions for robot dynamics. It is
known that the joint angle accelerations at any given time
depend linearly on the joint moments applied at the same time.
One of the initial steps of the paper is to develop a spatially
recursive state space model to characterize this linear relation-
ship. Development of this state space model makes it possible
to apply many of the ideas and concepts (transition matrix,
prediction, filtering, smoothing, etc.) from state estimation
theory. These concepts have proven themselves ideally suited
to investigate discrete-time systems. They are also very useful
to organize the recursive computations required to solve the
inverse and forward dynamics problems. The filter and
smoother are very easy to understand. Extensive analytical
and computational experience exists with this architecture in
other application areas. Standardized software also is available
that can be used to set up readily the required computations.

The notions of spatial force, acceleration, and inertia [6] are
used to develop the state space model and thereby simplify the
statement of the recursive equations. A spatial force acting on
a link is defined here as a six-dimensional vector whose first
three components represent a pure moment and whose last
three components represent a force. Both the moment and the
force forming the spatial force act on the link with which the
spatial force is associated. Similarly, a spatial acceleration is
defined to be a six-dimensional vector formed by an angular
acceleration and a linear acceleration. For any given link, the
spatial inertia is a 6 X 6 matrix which very compactly
embodies the mass and inertia properties of the link about its
inner joint (that joint closest to the base). It should be pointed
out that there are minor differences between the definitions for
spatial force, acceleration, and inertia used here and those of
[6].

One of the important steps in the paper is to recognize that
the equations of translational and rotational motion (derived
from Newton’s second law) for each link can be cast as a linear
difference equation that allows the spatial force at the inner
Joint to be computed from the spatial force at the outer joint
and the spatial acceleration of the link. The difference equation
is very similar to those describing the evolution of the state of
a discrete-time state space system [3]. The spatial force plays
the role of the state. The spatial interval, defined as the vector
from the inner to the outer joint, plays the role of the time
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interval between discrete time samples. This establishes a
means to ‘‘propagate’’ the spatial force inwardly within a link
from the outer joint to the inner joint. In addition, since the
magnitude of the spatial force is continuous at the joints (due to
Newton’s third law), a means also exists to propagate the
spatial force across a joint at the interface between two
adjacent links. Recursive use of these two steps allows a
complete link-to-link sequential propagation of the spatial
force from the tip to the base. An ‘‘output” equation is
associated with the above state equation in order to generate
the scalar joint moments. This output equation is defined in
terms of a 6 X 1 matrix that projects the six-dimensional
spatial force into the scalar moment along the joint axis. It
should be stressed that the equation for the spatial forces is a
difference equation in space and not in time. There is no time
discretization involved, and a fully continuous time evolution
is retained.

Similarly, a complementary difference equation is obtained
that produces a set of spatial accelerations as its solution and
uses the joint angle accelerations as inputs. The spatial
accelerations play the role of the costates (or adjoint variables)
that are typical in optimal control and estimation problems [3].
This costate equation reflects the kinematic relationship that
exists between the spatial (angular and linear) acceleration of a
link at its outer joint given the acceleration of its inner joint.
The difference equation can therefore be used to propagate
outwardly the spatial accelerations within a link. A similarly
outward propagation across the joint at the interface between
two adjacent links is obtained from the observation that the
relative angular acceleration along the joint axis introduces a
“jump’’ discontinuity in the joint-axis angular acceleration
component of the costate (spatial acceleration) vector.

When combined, the above state and costate difference
equations define a two-point boundary-value problem that
very closely resembles those typically encountered as neces-
sary (and at times sufficient) conditions for optimality in
optimal control and estimation theory. The boundary condi-
tions in this problem are that the state vanishes at the tip of the
manipulator and the costate vanishes at the base. These
conditions arise because of the assumptions that the tip is
unconstrained and the base is immobile (undergoes no
accelerations). By considering slightly different boundary
conditions, other types of configurations can be analyzed. This
is done without otherwise changing the statement of the two-
point boundary-value problem. For example, free-free bound-
ary conditions can be used to study systems in which the base
link is not attached to a fixed reference. Closed-chain systems,
in which the bodies form a loop, can also be studied by proper
selection of the boundary conditions. In all of these configura-
tions, the boundary-value problem is used as a starting point to
develop the recursive inverse and forward dynamics solutions.

Consider first the inverse dynamics problem. Its solution is
obtained by means of a two-stage process involving 1) an
outward recursion from the base link to the tip to obtain a set
of costates (spatial accelerations), using the set of prescribed
joint angle accelerations and the boundary condition at the
manipulator base, and 2) an inward recursion from the tip to
the base using the results of the first stage above and producing
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a set of states (spatial forces) at all of the links and the base.
The required joint moments are produced by the output
equation that is appended to the state equation. This two-stage
process can be performed either numerically or symbolically.
If performed numerically, the process is quite similar to those
commonly used to solve inverse dynamics problems for serial
robotic manipulators [7]. If performed symbolically, the
process results in the by now traditional dynamical equations
for an N-link manipulator, expressed in terms of an N X N
composite system inertia matrix.

To arrive at the above equations requires that the state and
costate equations of the two-point boundary-value problem be
solved in terms of the spatial transition matrix and its
transpose. Substitution of the solution for the costate into that
of the state leads to the desired equations of motion. An
interesting byproduct is a method for recursive computation of
the inertia matrix itself by means of an inward iteration from
the tip to the base. This recursive relationship for the inertia
matrix is equivalent to those that describe the propagation of
the covariance of the state of a linear discrete-time state space
system that is driven by white noise. With this result, the
similarities between the statistical estimation theory for
discrete-time systems and recursive robot arm dynamics begin
to reveal themselves. More similarities become apparent upon
investigation of the forward dynamics problem as outlined
below.

The forward dynamics solution also uses the two-point
boundary-value problem as a starting point. The key idea is to
seek a solution of the form x(k) = z(k) + P(k)A(k), where
Xx(k) and A(k) denote the state and costate for link k. The
symbol z(k) denotes a six-dimensional vector which turns out
to play the role of the predicted state estimate whose
propagation is described by the Kalman filter. The applied
joint moments play the role of the measurements. Similarly,
P(k)isa6 X 6 matrix, with the units of spatial inertia, which
satisfies a difference equation analogous to the Riccati
equation of the discrete Kalman filter. The above relationship
between states and costates is central to the ‘‘sweep method”’
referred to in [3]. Use of this in the two-point boundary-value
problem leads to a two-stage computation consisting of 1)
inward filtering to obtain a sequence of state (spatial force)
estimates and a corresponding ‘‘innovations’’ process defined
at each joint as the difference between the actual and the
predicted joint moment; and 2) outward smoothing in which
the innovations process resulting from the first stage is used to
generate a sequence of costates (spatial accelerations) and the
desired joint angle accelerations.

The filtering recursions have a predictor/corrector architec-
ture corresponding to that of the Kalman filter, specialized to
the case of no measurement noise. Prediction occurs by means
of a difference equation that for each link allows computation
of a state estimate for the spatial force at the inner joint using
the previously obtained state estimate at the outer joint.
Correction occurs in transferring the state estimate across a
joint between two adjacent links. In the correction step, the
updated state estimate is obtained as a linear weighted
combination of the predicted state estimate and the innovations
process. The weight multiplying the innovations is a 6 X 1
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matrix playing the role of the Kalman gain. The gain can be
computed from the spatial inertia matrix P(k). The Riccati
equation satisfied by this matrix involves also the two steps of
prediction and correction. Within any given link, prediction
occurs from the outer to the inner joint of the link. This
prediction step is achieved with an equation that requires
multiplication of the spatial inertia matrix P(k) by the spatial
transition matrix and its transpose. The spatial inertia matrix
associated with the link appears as a driving term in this
propagation equation. Correction occurs at each joint by
means of the update equation of the discrete Riccati equation.

A second stage involving smoothing uses the results of the
above filtering stage. Smoothing is performed by means of an
outward recursion that computes a sequence of costates
(spatial accelerations) using the innovations as an input. It also
produces the desired joint accelerations. The computations
involved in this stage are identical to those of the fixed time-
interval smoother [2], [3] of linear state estimation theory. The
smoother is mechanized with the Bryson-Frazier equations,
which also have a predictor-corrector architecture. Prediction
occurs in outward propagation of the costates within a link
from the inner joint to the outer joint. Correction occurs in
propagating the costate across a joint connecting two adjacent
links.

If the foregoing filtering and sinoothing process is con-

ducted symbolicaily (instead of numerically), a closed-form

expression for the inverse of the composite multilink system
inertia matrix results. To this end, the filtering equation is first
solved in terms of the transition matrix for the Kalman filter.
Then, the smoother equations for the costates are solved
symbolically in terms of the transpose of the same transition
matrix. Use of the solution for the states in the solution for the
costates leads to the desired equation of motion. This equation
requires no further matrix inversion in order to compute the
joint angle accelerations from the applied joint moments. An
interesting byproduct is a recursive technique for direct
nonnumerical evaluation of the inverse of the composite
system inertia matrix. The recursive equations are identical to
those that compute the covariance of the smoothed (as opposed
to the filtered) state estimation error in a fixed time-interval
smoother. They involve an inward recursion to compute the
predicted state estimation error covariance followed by an
outward recursion to obtain the covariance of the costates and
of the smoothed state estimation error.

The remaining sections of the paper describe the configura-
tion, the notions of spatial force, acceleration and inertia,
recursive system dynamics and kinematics, the two-point
boundary-value problem, inverse and forward dynamics solu-
tions, closed-form inversion of the inertia matrix, physical
interpretation, a planar chain example, relationship to other
work, and concluding remarks.

II. CONFIGURATION ‘AND PROBLEM STATEMENT

Consider a mechanical system of N links numbered 1, - - -,
N connected together by N joints numbered 1, - - -, N to form
a branch-free kinematic chain. The system is illustrated in Fig.
1.

The links and joints are numbered in an increasing order
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Fig. 1.

that goes from the tip of the system toward the base. Joint & in
the sequence connects links K and & + 1. Joint O can ‘be
selected at any arbitrary point in link 1. Note that link and joint
numbers increase toward the base of the system. This differs
from the more common numbering approach in which the
numbers increase toward the tip. The ordering shown in Fig. 1
allows a simpler description of the recursive algorithms
contained in the paper.

Let link k& be characterized by an inertia tensor I(k) about
joint k, a mass m (k), a link vector L (k) from joint k to joint k
— 1, and a vector p(k) from joint & to the link £ mass center.

The joints labeled 1, -+, N are single-degree-of-freedom
joints, which allow rotation along the joint axis only. For these
joints, A (k) is a unit vector along the axis of rotation; 7(k) is
the active moment applied about the axis of joint &; and u (k) is
the corresponding joint angle which is positive in the right-
hand sense about A (k). The relative angular acceleration at
joint £ is denoted by a(k). The objective is to outline a
recursive method for computation of the joint accelerations
a(k), given the values of I(k), m(k), L(k), p(k), h(k), and
7(k). A secondary objective is to solve the closely related
inverse problem of computing 7(k) from the desired accelera-
tions a (k).

III. SPATIAL FORCE, ACCELERATION, AND INERTIA

To describe simply the recursive dynamics solutions, it is
convenient to define the notions of spatial force, acceleration,
and inertia [6]. Generally, the term spatial force refers to a 6
X 1 vector whose first three components are pure moments
and whose last three components are forces. Similarly, the
term spatial acceleration describes a 6 X 1 vector of three
angular accelerations and three linear accelerations. The link &
spatial inertia is a 6 X 6 matrix that summarizes the mass and
inertia properties of link & about joint k. A more detailed
definition of these concepts is provided below.

® T*(k) and F*(k) are 3 X 1 vectors representing,
respectively, the constraint moment and force acting at
joint k onlink & + 1 and that is due to the adjacent link &.
The spatial force is the 6 X 1 composite vector defined
by x*(k) = [-T*(k), —F*(k)] in which the +
superscript indicates that the corresponding variable is
evaluated at a point on the link & + 1 immediately
adjacent and on the ‘‘positive’’ side, toward the base, of
joint k.
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e T-(k) and F~(k) are 3 X 1 vectors representing,
respectively, the constraint moment and force acting on
link & at joint k. The spatial force is the 6 X 1 composite
vector defined by x~ (k) = [T~ (k), F~ (k)] The -
superscript indicates that the corresponding variable is
evaluated at a point on link k that is immediately adjacent
and on the ‘‘negative’’ side, in an outward direction, of
joint k. Note that Newton’s third law implies x* (k) =
x~ (k).

e T(k) and F(k) are, respectively, the external moment
and the force (due to gravity, for example) acting on link
k at its mass center.

e w+(k) and v*(k) are 3 X 1 vectors representing,
respectively, the angular and linear velocity of a point on
link k + 1 immediately inward of joint k. The
corresponding spatial velocity is defined as Vi) =
[w* (k), v*(k)]. Both angular and linear velocities
associated with a link are specified in a coordinate frame
attached to the link.

e w=(k) and v~ (k) are 3 X 1 vectors representing,
respectively, the angular and linear velocity of link k£ on
the negative side of joint k. The corresponding spatial
velocity is ¥~ (k) = [0~ (k), v~ (K)].

e A\~ (k) = [0 (k), v-(k)]is a6 X 1 vector of angular
and linear accelerations of link k at the negative side of
joint . Similarly, N* (k) = [@* (k), vt (k)] is a vector
of accelerations at the positive side of joint k. These
accelerations are expressed in link & coordinates. The
time derivative of the velocity is performed in a coordi-
nate frame in link k.

The spatial inertia matrix M (k) for link k is defined as

[ Ik
Mk)= (—m(k)ﬁ(k)

in which I(k) is the inertia matrix of link k about joint k; p(k)
is the vector from joint k to the link k& mass center; p(k)is the
3 x 3 matrix equivalent to the cross-product operation p (k)
X (+); and U'is the 3 X 3 identity. Note that the spatial inertia
matrix summarizes the inertia and mass properties of link k
about joint k. As an aside, observe that the kinetic energy
associated with link k is (1/2)V~ (k) o M(k) © V= (k) in
which V- (k) is the 6 X 1 vector of link k spatial velocities at
joint k.

For later reference, it is also convenient to define the
following 6 X 6 matrix:

)= <IOJ L(k(,Jm)) @

in which L(k, m) is the vector from joint k to joint m; and
L(k, m) is the 3 x 3 matrix equivalent to L(k, m) X (*).
This matrix has the following properties usually associated
with a transition matrix for a discrete linear state space system

[3]:

m(k)p(k)
m(k)U > M

é(k,

ok, my=¢(k, No(i, m) ok, k)=U

¢~ '(k, m)=¢(m, k) ©))
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which state that the matrix satisfies the semigroup property;
that it becomes the identity when its two arguments (its
subscripts) coincide; and that the matrix inverse is obtained by
reversing its two arguments.

IV. DyNaMics: INWARD RECURSION FOR SPATIAL FORCES

The main objective of this section is to establish that the
spatial forces x(k) satisfy

x (kK)=¢(k, k—1)x*(k—1) +MKN (k) + b(k) 4
x*(k)=x"(k) )
x*(0)=0 ©6)

where N\~ (k) is the 6 X 1 vector of spatial accelerations and
b(k) is the bias spatial force

_ wXI - wt+tmpX[wXv ]-T—pXF
b= _ . @)
mwXp+maoXv. —F

The argument & has been omitted from all of the variables in
(7) to simplify notation.

Proof: Observe [4] that the equation of rotational motion
for link k about joint kK is
I o+ox] wo+mpX[p-+oxXv ]=T+T"

+pxXF+TH(k—1)+L(k)xF*(k—1) (8)

in which 7 is the link k inertia about joint k and m is the link £
mass. The argument k has been omitted from all variables
except those terms involving forces and moments acting at
joint k£ — 1. Similarly, the translation of link k is governed by

m[pr+&-+w><u—]=F+F—+F+(k—1). )

These two equations combine into (4). To establish (3),
observe that

_THk)=T-(k) —F+*(k)=F (k).  (10)

Finally, (6) reflects the assumed lack of constraints (due to
loads, for example) at the initial joint of the system.

V. KINEMATICS: QUTWARD RECURSION FOR SPATIAL
ACCELERATIONS

The sequence of spatial velocities satisfies
V(k—-1)=¢T(k, k—=1)V (k) 11
V-(k)=V*(k)+HT(k)u(k) (12)

in which V- (k) and V* (k) are, respectively, the spatial
velocities on the negative and positive side of joint k, and u (k)
is the relative angular velocity at joint k. The accelerations
satisfy the closely related recursion

A (k-1 =¢T(k, k—1)N (k)
A (k)=N* (k) +HT(k)‘a(k) +n(k)

(13)
(14)
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where n(k) is the ‘‘bias’’ acceleration

_ [ wr (k)X h(k)u(k)
”(k)‘(v+(k)xh(k)a(k)> : (15)
Proof: Since link k is rigid, then w*(k — 1) = 0~ (k)

and vt (k — 1) = v~ (k) + w™ (k) X L(k). This establishes
(11). To establish (12), observe that the linear velocities on
both sides of joint k are equal to each other, and that the
relative angular velocity in crossing joint k& equals the rotation
about the joint axis. The recursive relationships (13)-(15) can
be established by appropriate time differentiation of (11) and
(12).

VI. Two-PoINT BOUNDARY-VALUE PROBLEM

The sequences of spatial forces x(k) and spatial accelera-
tions A (k) satisfy the two-point boundary-value problem:

x~(ky=¢(k, k—Dx*(k-1)+ M)A (k)+b(k) (16)

x*(k)y=x"(k) an

AN (k—1)=¢T(k, k—1)N"(k) (18)

N (K)=N*(k)+ HT(k)a(k)+n(k) (19)
7(k)=H(k)x*(k) 20)
x*(0)=Ar*(N)=0. @n

This is a two-point boundary-value problem in the sense that
the boundary conditions (21) are satisfied at two distinct points
in space: the initial joint at the tip of the system and the
terminal joint at the base. The boundary conditions reflect the
assumptions that the spatial force vanishes at the tip and that
the base is (by definition) immobile. This two-point boundary-
value problem is analogous to those encountered in quadratic
optimal control and estimation theory for linear systems [3].
Such problems have been investigated extensively to develop
filtering and smoothing solutions for dynamical systems. The
equivalence between the boundary-value problems of estima-
tion and dynamics is outlined in Table I. A more complete
investigation of this equivalence is contained in Section IX.

The above problem can be used as a starting point to solve
the following two closely related problems: obtain the moment
sequence 7(k), given knowledge of the joint accelerations
a{k); obtain the joint accelerations a(k) from knowledge of
the active joint moments 7(k). These are referred to, respec-
tively, as the inverse and forward dynamics problems and are
solved, respectively, in the following two sections.

VII. INVERSE DYNAMICS

The solution to the inverse dynamics probiem consists of a
two-stage process of outward recursion based on the costate
difference equation followed by an inward recursion based on
the state equation. This is fundamentally a state-space formu-
lation of the recursive techniques of {7]-[11].

The first stage involves an outward sequential process to
determine a sequence of spatial accelerations. This outward
recursion is based on (18) and (19) and assumes that the spatial
bias accelerations # (k) have been determined previously from
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TABLE 1
EQUIVALENCE BETWEEN TWO-POINT BOUNDARY-VALUE PROBLEMS
IN QPTIMAL ESTIMATION AND RECURSIVE ROBOT DYNAMICS

Estimation Robot Dynamics
States x(k) spatial forces
Costates A(k) spatial accelerations
Measurements 7(k) active joint moments
Transition matrix ok, k- 1) spatial jacobian
Process error covariance M) spatial inertia

Known input b(k) spatial bias force
State-to-output map H(k) state-to-joint-axis map

the spatial and joint angle velocities ¥ (k) and # (k) in (11) and
(12). Equation (19) describes an operation by which the spatial
acceleration A* (k) on the positive side of joint k, the joint
acceleration a(k), and the bias acceleration n(k) are combined
to obtain the updated spatial acceleration A~ (k) at the negative
side of joint k. Not shown is a coordinate transformation, that
is typically performed in crossing a joint, to convert the spatial
accelerations into the coordinate frame of the next link. After
the joint is crossed and the acceleration is updated, a
propagation step based on (18) is conducted. This step
determines the acceleration at the outer joint of link k, given
the acceleration at the inner joint k. These two steps of update
at a joint followed by propagation from the inner to the outer
joint define a sequential technique that generates all of the
spatial accelerations. This process is started with the boundary
condition A*(N) = 0.

The second stage in the inverse dynamics solution involves
an inward sequential process to generate the spatial forces and
the applied joint moments. The second stage is based on (16)
and (17). Equation (16) involves propagation of the spatial
force to the inner joint of a link from the outer joint. Use is
made of the previously determined spatial accelerations and
bias force. Equation (12) expresses continuity of the magni-
tude of the spatial force in crossing a joint between two
adjacent links. The process starts with the boundary condition
that the spatial force vanishes at the initial joint. The process
continues inwardly from the tip to the base until a full
sequence of spatial forces x (k) has been generated. The active
joint moments (k) for k = 1, - -+, N are obtained from the
spatial forces by means of the output equation (20).

The boundary-value problem (16)-(21) can also be used to
arrive at the traditional second-order matrix equation

M@)a+V(u,u)=r (22)

where M is the composite multilink system inertia matrix; a =
[a(1), -+, a(N)] is the vector of joint accelerations; and 7 =
[7(1), + -+, 7(N)] is the vector of joint moments. To derive
(22), begin by observing that (18) and (19) imply

N
>\‘(J')=E ¢T3, HIHT(Da(i) + (D). (23)
Similarly, the state eéuations (16) and (17) imply that
k .
x= (k)= ok, HNIMUGIN-U)+b()]. 24

i=t
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N

N1
Fig. 2. Tlustration of double summation order reversal.

Substitution of (23) in (24) leads to

k N
x (k)= 3 ¢k, HM()e T, J)HT(H)a(i) +n(D)]

j=1i=j
k -
+3 8k, ))bG). @5)
J=1
However, observe the identity
i i i min {i,k)

J=bli=j i=1 j=1

(26)

which can be established by inspection of Fig. 2.
Use of this in (25) implies that

N k
(k)= rk, DIHT(Da(i)+n(i))+ Y ok, b

i=1 i=1

@7
where r(k, i) is the 6 X 6 matrix
l<i<k=<N Nzizk=1
r(k, i) 8k, D)r(i) r(k)$ (i, k)
k
)= ¢k, IM)ST(K, ). 28)

j=1
Observe also that r(k) satisfies the recursive relationship
r(k)y=o(k, k—1)r(k—=1¢7(k, k=1)+M(k) (29)

with the initial condition 7(0) = 0. This formula is similar to
that satisfied by the covariance of the state of a linear discrete-
time system driven by a process error with covariance M(k)
[3]. Use 7(k) = H(k)x~ (k) in (27) to obtain

i m(k, i)a(i)+ Vk(u, u)=r7(k)

i=1

where m(k, i) = H(k)r(k, i)HT(/) and

(30)

V*(u, 12)=§ H(k)r(k, i)n(i)+§k: H(k)p(k, i)b(i).

i=1 i=1

@30
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This is the scalar version of the matrix equation (22). The
quantities m (k, i) above are the scalar elements of the inertia
matrix M in (22). The elements of the vector ¥V = [V, -+,
V'N] are given by (31).

Physical Interpretation

It is of interest to provide a physical interpretation of the
foregoing result. This is done by expressing the above
recursions in terms of the changes undergone by the mass,
mass center location, and inertia of the composite body
outboard of joint K — 1 as link k is added to it. The aim is to
establish that the inverse dynamics solutions outlined above
are equivalent to the composite rigid body method advanced in
[11], [12] for its computational efficiency.

It has been shown that the elements m(k, /) of the system
inertia matrix M can be determined by

initialize state covariance r(0)=0
propagate state coevariance (1 <i<N)
r(y=¢(, i-)r(i—-1Deo 73, i-1D)+M()
initialize state (1 <i<N) x(i)=r()HT(i)
propagate state (i<k<N) x(k)=¢(k, k—1)x(k—1)
inertia matrix element (i<k<N) m(k, i)=H(k)x(k).
(32)

This sequence of steps computes the elements of the inertia
matrix in the triangular region i < kK < N.

To show that this is equivalent to the composite rigid body
method, assume that r(i) can be expressed as

ARG
0= ( ~p()C()

in which p(i), C(i), and J(/) are the mass, mass center
location, and the inertia of the body formed by links I, - -+, i.
The mass center location and the inertia are determined from
joint #. Substitution of (33) in (32) leads to the recursions: p(i)
= p(i — 1) + m(i) for the mass; C(i)p(i) = [C(G — 1) +
L@)p(i — 1) + m(i)p(i) for the mass center location; and
JE)=JG -1+ I()+ ol - DUCUE-1)+ LENTCU
— D+ LEU - (CGE- D+ LEXCE- 1)+ L3ENT)
- pi — D[CTG — DC(GE — HU - C@ - DCT(E - 1]
for the inertia. These recursions are started with the initial
conditions p{0) = 0, C(0) = 0, and J(0) = 0.

The diagonal elements of the composite system inertia
matrix are computed by m (i, i) = hT(i)J(@)h(i). The off-
diagonal elements m (k, i) in the triangular regioni < kK < N
are computed by the last two equations in (32).

One of the advantages of (33) is that the spatial inertia
matrix is parameterized with a minimal number of ten
parameters (one for the mass, three for the mass center
location, and six for the rotational inertia). The number of
parameters is reduced from the maximum number of 21
required to characterize a 6 X 6 symmetric matrix. This
reduces the number of computations. This is an illustration of

é(z‘)p(i)> (33)

p(DHU
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one of the important points of the paper. The state space
formulation to spatial recursions is conceptually very simple as
illustrated in (32). Computational efficiency can be obtained
by using a suitable parametric characterization for the equa-
tions.

VIII. ForwARD DYNAMICS

The forward dynamics problem is to find the accelerations
a(k) at the joints, given the applied joint moments 7(k). The
problem is solved using (16)—(21) and what is referred to as
the sweep method in [3]. The sweep method begins by
assuming that the state x(k) and the costate A (k) are related by

x(k)=z(k)+P(k)N(K) (34
where z(k) and P(k) are to be determined by means of
recursive equations that emerge upon substitution of (34) in
(16)-(21). There, z(k) will play the role that the predicted
state estimate plays in the Kalman filter, and P (k) will play the
role of the corresponding state estimation error covariance.

Result

The joint accelerations a(k) can be computed from the
applied joint moments 7(k) by means of the two-stage process
of inward filtering and outward smoothing.

Filtering:
initial conditions z*(0)=0; P*(0)=0 (35
state prediction z7(k)=¢(k, k—1)z* () +b(k) (36)
inertia prediction P~ (k)
=¢(k, k—1)P* (k-1 T(k, k—1)+M(k) (37)
joint axis inertia D(k)=H(k)P~(k)HT(k)  (38)
gain G(k)=P~(k)HT(k)/D(k) 39
innovations e~ (k) =7(k)— H(k)z7 (k) 40)
state update z*(k)=z"(k)+ G(k)e (k) + P*(k)n(k)
(41)
residuals e* (k) =e~(k)/D(k) (42)
inertia update P*(k)=P~ (k)
—P-(k)HT(K)H(k)P~(k)/D(k). (43)

The residuals e*(k) and the gains G(k) are stored in this
stage. The scalar D(k), whose inversion is required to
compute the gain G(k), represents the inertia along the joint &
axis of the composite body formed by the links outboard of this
joint. All of the joints outboard of joint & are unlocked in
defining the inertia D(k).
Smoothing:
terminal costate A*(N)=0 (44)

costate propagation \*(k—1)=¢T(k, k—1)\=(k) (45)
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joint accelerations a(k)=e*(k)—G T(K)[NT (k) +n(k)]
(46)
costate update N~ (k) =A* (k) +n(k)+HT(k)a(k). (47)

Not shown explicitly is a link k to link k + 1 coordinate
transformation that is performed immediately after a joint has
been crossed and the state and spatial inertia have been
updated in (41) and (43). A similar transformation from link
k + 1 to link k is performed after the costate propagation
in (45). ;

Proof: Substitute (34) in (20) to obtain e~ (k) = H(k)
P~ (k) A~ (k) where e~ (k) is the innovations process defined
by (40). Now, substitute (19) in this to obtain (46). Use of this
in (19) leads to

A= (k) =1~ G(k)H (K)ITIN* (k) +n(K)]+ HT(k)e* (k)
(48)

which provides an alternative to (47) in updating the costate at
joint k. Substitute (34) in (16) to obtain

27 (k) + P~ (k)N (k)= (k, k—D[z*(k=1)

+ PH(k—= DA (k= DI+ MM (k) +b(k). (49)

Use (18) and observe that the state and spatial inertia
propagation equations (36) and (37) are sufficient conditions to
satisfy (49). To obtain the state and inertia update equations,
observe that (17) and (34) imply z* (k) + P*(k) N* (k) =
z-(k) + P~ (k) N\~ (k). Finally, substitute (48) on the right
side of this. As an aside, note that the spatial inertia can also be
updated by

P*(k)=[I-G(k)H (k)P (k)=P~(k)[I-G(K)H (k)}T
(50)
P*(k)=[I-G(k)H (k)P ()1~ G(K)H(K)]T (51)

as is well-known in Kalman filtering [3]. These two equations
can be obtained easily from the inertia update equation (43).

IX. SIMILARITIES TO KALMAN FILTERING AND BRYSON-FRAZIER
SMOOTHING

The two-point boundary-value problem of Section VI and
the filtering and smoothing equations of Section VIII are
analogous to those typically used to obtain the best smoothed
state estimate of a discrete-time state space system with
discrete measurements (for the special case of no measurement
noise). To examine this analogy more closely, consider the
following system:

x(k)y=¢(k, k—Dx(k—1)+w(k) (k)=H(k)x(k)
(52)

where x(k) is the state; 7(k) is the observation; ¢(k, k—1is
the transition matrix; H (k) is the state-to-measurement map;
and w(k) is a white-Gaussian process with mean and
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covariance specified by

E[w(k)]=b(k)  E[W(k)wT(k)]=M(k) (53)

with w(k) = w(k) — b(k). To simplify the discussion, it is
assumed in this section that the acceleration bias term »n (k) has

been -set to zero.
The filtering problem consists of finding

27 (ky=E{x(k)/r(1), -+, 7(k—=1)]. (54)

This is the best estimate of the state at time & given all of the
previous measurements. Closely related to this filtered esti-
mate is the innovations process defined by

e (k)=7(k)-H(k)z" (k). (55)
The filtered state estimation error covariance is
E[x(k)—z=(k)l[x(k)—~z~(k)]T=P~ (k) (56)

which is known [3] to satisfy the discrete Riccati equation. The
covariance of the innovations is known to be

Ele (kye  (k)]=D(k). (7)

Note that (57) is obtained from the more general formula D (k)
= Hk)P~ (k)HT(k) + R(k) by setting the measurement
noise covariance R (k) to zero. The equations for the Kalman
gain and the updated covariance are (39) and (43). The
updated state estimation error covariance P* (k) can be shown
to be

E[x(k)=z*(K)][x(k)—z* (k)] T=P*(k)  (58)

where zt (k) = z7(k) + G(k)e~ (k) is the updated state
estimate

2+ (k)y=E[x(k)/7(1), -+ -, 7(K)]. (59

The smoothing problem associated with (52) and (53) is to
find

x(k)y=E[x(k)/7(1), -+, 7(N)] (60)

the best estimate of the state, given all of the data 7 = [7(1),

-+, 7(N)] at the N measurement locations. It is known [3]
that the best smoothed estimate can be generated by means of
the Bryson-Frazier equations

2(k)y=z(k)+P(k)N(K) (61)

where A (k) are the costates specified by
AN (k=1)=¢T(k, k—1)\"(k) (62)
N (K)=[I-G(k)H(K) TN (k) + HT(k)e* (k). (63)

The error covariance S(k) associated with the smoothed state
estimate is defined as

S(k)=E[x(k)—2(k)l[x(k) -2 (k)] (64)
This matrix is given by [3]
S(k)=P(k)—P(k)A(k)P(k) (65)
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where A (k) is the costate covariance defined as
A(k)=E[NKINT(K)]. (66)

It is known also that A (k) satisfies the recursive relationships

A*(k=1)=¢T(k, k—1)A™(K)$(k, k=1)  (67)
A~ (k)=[1—-G(k)H (k) A* (k)L - G(k)H (k)]
+HT(k)H (k)/D(k). (68)

This is a backward recursion consisting of propagation in (67)
followed by an update in (68). The boundary condition A* (N)
= 0 is valid at sample N.

It is possible to obtain the closed-form inverse of the inertia
matrix in terms of a pair of matrices analogous to P(k) and
A(k) above. This is done in the next section.

X. CLoSED-FORM INERTIA MATRIX INVERSE

The central objective is to obtain the following equation:
a(k)y=a'(k)+a*(k)+a’(k) (69)

in which a'(k), a*(k), and a3(k) are the joint angle
accelerations due to the applied joint moments 7(k), the bias
spatial forces b(k), and the bias spatial accelerations n(k).
The three acceleration components are given by

al(k)y=c(k)r(k)+d(k) kﬁ:l Yk, iM)G()r(D)
i=1

FGTU) S PTG, kAT ()

i=k+1

200 =d (k)b +d(k) ST wik=, )b(0)

i=1
LGTH) S VTG, kDA (D))
i=k+1

a*(k)=GT(k)[A*(k)P* (k)= I]n(k)

k-1
+d(k) D) Yk, iT)PH()n(i)

+GT(k) i YT, k)

i=k+1

At P —1]n() (70)

where c(k) and d (k) are the scalar and the 1 X 6 vector
c(k) =D~ k)+GT(k)A*(k)G(k)
d(k)=GT(k)A*(k)—c(k)H (k).

The transition matrix ¥ (k—, i*) is defined as

(71)

k=1

k=, i=¢0k k=1 T]

J=i+l

(I-GUHHUGNSU, j-1).

(72)
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Note the definitions Y (k~, i™) = ¥(k~, i*)[I — G@)YH()]
and y(k*, it) = [I — Gk)HK)]1Y(k™, it). The matrix
VY(k~, i*) is the transition matrix for the Kalman filter. Its two
arguments kK~ and i* represent, respectively, the negative side
of joint k& and the positive side of joint i. The sequence of
multiplications on the right side of (72) is taken along the path
from joint { to joint k.

Recall that (22) implies that @ = M~ '(w){r — V(u, u)],
where M is the inertia matrix. Hence the elements of its
inverse can be obtained by inspection of a!(k) in (70).

The overall approach used to arrive at (69) is based on
solving both the state and costate difference equations in terms
of their corresponding, and mutually adjoint, weighting
kernels. Substitution of the costate solution into the state
solution leads to the desired result. This is now performed in
detail for the acceleration component in (69) due to the applied
joint moments. The other two components, due to bias forces
and accelerations, can be evaluated in a similar fashion.

Solution of the State Equation

The aim here is to show that the sequences of *‘predicted’’
spatial forces and residuals are specified by

k—~1
27 (k)=3; ¥(k™, i")G(i)7(i)

i=1

(73)

k-1
e*(k)=D"'(k) [T(k)~H(k) > vk, i+)G(i)7(i)] :

i=1
(74)

To this end, observe that substitution of (36) in (41) implies
zt k) = Ykt, k — 1H)z%(k — 1) + G(k)r(k). Hence
2t (k) = EJ".'=1 vkt, jHYG(J)7(j). Now use (36) to obtain
(73). This, together with (40) and (42), implies (74).

Solution of the Costate Equation

Use of similar arguments can be made to show that (44)-
47y imply

A (k)= f} YT, k) HT(i)e* (i)

i=k+1

(75)

a'(k)=e*(k)—GT7(k) fj YT, k) HT(ie* (i)

i=k+1
(76)

Joint Accelerations Due to Joint Moments

The objective here is to obtain a'(k) in (69). To this end,
substitute (74) in (76) to obtain

al(k)=e*(k)—-GT(k) f: YT, kNYHT()D'(D)

i=k+1

i-1
: [T(i)—H(i)E !P(i‘,j*)G(j)T(j)] )
j=1
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Recall the identity

i-1  N-

=§E

(78)

i=k+1 j=1 1 i=m

with m = max (k + 1, i + 1). Observe that

f: '55 VI3, kOHTOD I (HHO Y, j)GU)T())

i=k+1 j=1

k-1
=A*(k)G(k)r(k)+ A% (k) 3 ¥(k*, jHYGU)7())

=1

N
+ 3 ¥TUY, kDAY)GU) () (79)

J=k+1

where

A*(k)= i Y73, kYHTOD- (OHGOY (I, k).

i=k+1

(80)

In arriving at the upper limit of summation for the last term in
(79), use has been made of the terminal condition A* (N) = 0
implied by (80). Finally, use of (74) and (79) in (76) leads to
a'(k) in (69). This evaluates the acceleration component due
to the applied joint moments. The components due to bias
forces and accelerations can be obtained similarly.

Observe that (80) implies that the sequence A(k) satisfies
the recursive equations

At(k—-1)=¢T(k, k—1A(K)d(k, k—1) (8D
A~(k)={I-G(k)H(K))TA*(k){I—-G(k)H (k)]
+HT(kYH (k)/D(k). (82)

These equations are identical to the ones satisfied by the
costate variable covariance of the fixed-time smoother in
Section IX.

Recursive Evaluation of Inertia Matrix Inverse

The above results imply that the inverse of the inertia matrix
can be computed recursively by means of

initial inertia P*(0)=0

inertia prediction (1<i<N)

P-(N=¢, i-DP({-1¢TU, i-1)+M(®)
inertia update (1 si<N)

Pr(iy=P-(i)—P-()HT()H ()P~ (1)/D(i)

terminal costate covariance A*(N)=0
costate covariance update (N=i=1)
A~()=[I-GOH@MITA*(DHI- G H ()]

+ HG)HT(i)/D(i)



RODRIGUEZ: ROBOT ARM FORWARD AND INVERSE DYNAMICS

costate covariance propagation (N—1=iz=1)
At(DN=¢(+1, DA+ 1)¢(i+1, )
inertia inverse diagonal element (N=i=1)
m='(i, )=D~ ')+ GT()A*(HG)
terminal costate (k=1/)
a (kK)y=AY()YG)—-m='(i, DHT()
costate propagation (i—1=k=1)
at(k)=¢(k+1, kya=(k+1)
inertia inverse off-diagonal element
m~Yk, )=GT{k)a* (k)
costate update (i—1=k=1)

a (K)=[I-G(k)H (k) Tat(k). (83)

The above steps determine the elements m ~1(k, i) of the
inverse of the inertia matrix in the triangular region k < i <
N.

The above computations are analogous to those in (32),
which determine the elements of the inertia matrix recursively.
However, for the inverse dynamics problem of Section VII it
was possible to use a minimum number of ten parameters to
characterize (32). These parameters corresponded to the mass,
mass center, and inertia of the composite body outboard of joint
k. It is of interest to investigate the consequences of using a
similar set of parameters to characterize (83). For example,
use of the same parameter set for the solution P(k) to the
discrete Riccati equation leads to

mass propagation p(k)—=p(k—1)+m(k)U

mass update p(K)—p(k)
—p(k)CT(k)Yh(k)YhT(k)C(k)p(k)/D(k)

mass center propagation C(k)p(k)—=[C(k—1)
+L(K)]o(k—1)+m(k)j(k)

mass center update C(k)p (k)
—~[I=J(k)h(k)hT(k)/D(k)]C(k)p(k)
inertia propagation J(k)—J(k—1)+1(k)
+(Clk=1D)+L(k)p(k—1)(C(k-1)
+L(k)T=Clk—1Dp(k—1)CT(k-1)
inertia update J(k)—[I—J(k)h(k)hT(k)/D(k)}J (k) (84)

in which D(k) = hT(k) J(k)h(k). These equations can be
viewed as the extensions to the forward dynamics case of the
composite rigid body method for inverse dynamics. However,
in contrast to the earlier results for the inverse dynamics
problem, use of the mass, mass center, and inertia parameters
of the composite rigid body does not appear to reduce the
number of computations. The main reason for this is that the
mass p (k) is a full symmetric 3 X 3 matrix, whereas in the
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inverse dynamics problem, this matrix was reduced to a simple
scalar. Similarly, the mass center C (k) appears to be a full 3
X 3 matrix, which may not be symmetric. Hence the number
of independent parameters in (84) is 21 (six each for the mass
and inertia, and nine for the mass center). Use of (84) in place
(83), while providing some physical insight, does not appear
to lead to computational savings. Equation (83) appears to
provide a more efficient means to evaluate the inertia matrix
inverse recursively. However, this requires that P(k) be
characterized by the 21 independent parameters required to
specify an arbitrary, symmetric 6 X 6 matrix. A similar
number is also required for the matrix A (k). More investiga-
tion is required to determine if there is a better parameter set to
characterize (83).

XI. PHYSICAL INTERPRETATION

This section explores more completely the underlying
reasons for the analogy between estimation theory and robot
dynamics. This is done by examining two areas: 1) the use of a
spatially random state space model for the dynamics of a
typical link; and 2) description of the filtering and smoothing
equations in terms of physical quantities.

Spatially Random Model

First, observe that the robot arm under study here is a serial
structure in which the links and joints are numbered in
increasing order. Because of this, the link numbering approach
allows definition of the notion of past, present, and future. For
example, a sequence that starts at the tip and goes to the base is
analogous to a dynamical process that evolves forward from an
initial to a terminal time. If a given link lies closer to the base
than another link, then the given link can be said to be in the
future. Similarly, if a link lies closer to the tip, then it can be
said to be in the past. This notion of causality in turn allows for
definition of the notion of prediction, which in this case means
to estimate the spatial forces in the future given only past and
present information.

Now, develop a causal model for one-step prediction of the
spatial force at the inner joint of a link, given the spatial force
at the outer joint. Such a model, contained in (52), is based on
the equation x(k) = ¢(k, &k — Dx(k — 1) + w(k). The
model has a built-in error represented by the term w(k) in this
equation. This error is due to the fact that the link is in general
moving and undergoing accelerations. There is a force acting
on the link that is due to the acceleration and mass distribution
of the link. This force is referred to typically as a D’ Alembert
force. One of the fundamental assumptions made in this paper
is that this force is initially (before estimation occurs) modeled
as a spatially distributed white-noise process with mean and
covariance given by the spatial bias force b(k) and the spatial
inertia matrix M (k). This takes the point of view of a local
observer whose perception is by definition confined to the
location of joint k itself. This observer is assumed to know
nothing about the applied moments acting at the joints or about
the accelerations acting on any of the adjoining links. The
observer assumes that its own acceleration at joint k is
uncorrelated with the acceleration at the remaining joints. It
should be pointed out that the white-noise model is only an a
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priori model. There is uncertainty in the inertial forces only
before the estimation process is conducted. After estimation
takes place, this uncertainty no longer exists. The estimation
error covariance of the joint angle accelerations that emerge
from the filter and smoother vanishes.

To complete the state space model requires an output or
measurement equation, to model the relationship between the

=
state of the system and its output. This equation is 7(k) = f?_é -_gé
H(k)x* (k) which states that the measurements can be 25 ®=z¢2
obtained from the state by projection into the appropriate joint s e 'g 8
axis. The measurement equation has no uncertainty (no z 20 ol
measurement error) because the active moments are assumed Ex e z
to be deterministic quantities. ZEZ. o
The above ingredients are identical to those that occur in = i'_ =
state estimation theory. The system is modeled as a combina- ag
tion of a deterministic model to propagate states based on the ® §§ o
transition matrix, an additive random noise model for uncer- =3 <
tainty, and a measurement equation to model the relationship ° <C> e g
between states and measurements. The estimation problem . i g
consists of estimating the states (and the inertial forces), given v
the set of measurements. The corresponding dynamics prob- 3
lem is to find the forces and accelerations, given the active & §z§ — )
moments at the joints. The equations that solve these two N E5Ers 2 5
equivalent problems are analyzed below from the mutually ‘a & § E
complementary points of view of dynamics and estimation N D z To g
theory. & = g
B - e
Filtering and Smoothing » 24 =3 g
The filtering process starts at a fictitious joint O attached to __: Eii ____________ N S é
the tip body. The state and spatial inertia initial conditions at o 2
this joint are both zero. The initial state estimate is zero, Emg &0
because there are no external forces and moments acting at the - % § = & 5
initial joint. Since this knowledge is precise, there is no Sy & g 2 i
uncertainty, and the corresponding estimation error covari- _ng @E ~
ance is zero. The initial condition for the Riccati equation is . g 8
therefore zero. This is from the point of view of estimation z @ == =
theory. From the point of view of mechanics, the spatial A ™ 5‘%;
inertia at the initial joint is zero because by definition there is 2
no inertia outboard of this joint (the initial joint is assumed to §§§
be on the surface of the initial link). From this initial g E Eu"ﬂ = ® 2
condition, the filtering equations proceed with the by now 2 +\} £Sge —(O) &
classical predictor-corrector architecture of the Kalman filter = v =S R g
(Fig. 3). ® 52
The step of prediction in (36) and (37) involves crossing link 2 %
k from joint & — 1 to joint k. A prediction step © is used to g © =o
propagate the state from the outer to the inner joint. The bias 25 z
force @ is added as a deterministic input in this step. The EE.,;‘
spatial inertia is also propagated by means of the prediction
step in the Riccati equation. This equation reflects the increase 8 m! @’_
in the spatial inertia due to the addition of a link. From the SwE o2
viewpoint of estimation theory, the prediction step reflects +£88% e 292
increases in the state estimation error covariance, which are

due to the buildup of uncertainty that occurs because the
inertial forces are assumed to be random. Knowledge of the
covariance allows for compensation of this uncertainty. This is
done in the correction step that follows.

Correction occurs in crossing a joint from one link to the
next. It involves updating the state estimate and spatial inertia.
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Before the correction step occurs, there are two estimates for
the moment about the joint axis. One of the estimates ® comes
from the previously conducted prediction step. This estimate
has an inherent error with a known covariance. The second
estimate ® comes from the measurement itself and has no
error. These two estimates are combined optimally in the state
update equation. An error (innovations) term ® is first created
that represents the difference between the actual moment
(measurement) and the predicted moment. Note that the
innovations process has the units of a pure moment. The
innovations process is multiplied by the Kalman gain © to
form the correction term @ that is then added to the predicted
state estimate. The state update also involves addition of the
bias term ® due to the bias acceleration. Note that this term
has the physical units of a spatial force and is the product of the
updated spatial inertia at a joint and the bias acceleration at the
same joint.

Central to the above correction step is the Kalman gain
determined from the propagated inertia by means of (38). The
Kalman gain governs the relative weighting between the
predicted state estimate and the correction term. In approxi-
mate terms, if the spatial inertia of the body outboard of joint &
is large, then the uncertainty in the predicted estimate is large.
The resulting gain is large, and the correction term is weighted
more heavily than the prediction term. In contrast, if the
inertia of the same composite body is small, the uncertainty in
the predicted state estimate is also small. More reliance is then
placed on this estimate. Note that there is a gain associated
w.th each of the joints. Each gainis a 6 X 1 vector. For each
joint, the component of the gain along the joint axis is the
identity. This can be observed from the condition H (k) P~ (k)
= 0. The inertia along the joint axis is zero after the update
occurs. Equivalently, the covariance of the state estimation
error along the joint axis is zero after the update. This means
that the updated state estimate in the joint axis has no error.
This is as expected because the measurement equation has no
noise. From the point of view of mechanics, the spatial force
in the direction of the joint axis is the active joint moment.
Since this moment is known precisely (and is in fact imposed
by the actuating device assumed at the joint), then the
component of the state estimate in the joint axis direction is
simply set equal to this active moment.

An additional outcome of the filtering equations is the
residual process ®. The residual at joint & is an estimate of the
joint k angular acceleration, under the assumption that all of
the future joints are locked. It is a causal estimate in the sense
that it is based only on past and present joint moments. It does
not depend on future joint moments. There is an inherent
potential error in this estimate, because the assumption of no
future acceleration may not be valid. However, this error is
compensated for in the smoothing stage that follows.

The inputs to the smoothing stage are a set of residuals. The
Kalman gains are also assumed to be known. The outputs are a
set of joint angle accelerations @, which are the final result of
the forward dynamics computations. The acceleration that is
computed at any given joint is that due to past, present, and
future joint moments. This is in contrast to the joint accelera-
tions (residuals) computed in the filtering stage, in which only
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past and present joint moments are used in computing the
residual acceleration at a given joint.

The smoothing stage also has an architecture that involves
prediction and correction. The correction step is used to cross
a joint, while the prediction step is used to cross a link. In the
update step, a joint angle acceleration is computed, and a new
spatial acceleration @ is determined at the inner joint of the
next link. In the prediction step, spatial accelerations are
propagated outward to the outer joint. The transpose @ of the
transition matrix is used to do this. The smoothing stage
proceeds sequentially from the base to the tip. At the end the
filtering and smoothing computations, all of the joints have
been crossed twice, once in the inward direction and again in
the outward direction. In the second crossing, the correction
due to applied joint moments in the future takes place.

Observe in Fig. 3 that the filtering and smoothing stages can
be viewed as mirror images of each other about a vertical line
that cuts the diagram in two. This is a graphical illustration of
the result that the filtering and smoothing algorithms factor the
inverse of the composite multibody system inertia matrix as
M-V = (I — L¥)D-'(I — L)in which L is a lower triangular
matrix, and L* is its upper triangular transpose. The matrix D
is diagonal. This result is developed in [5].

X1I. PLANAR CHAIN EXAMPLE

To illustrate the foregoing ideas, consider a simple example
in which only planar motion is allowed. The example
illustrates the relative ease with which the filter and smoother
are set up. It also provides a means to estimate the number of
arithmetic operations required. This is done parametrically in
terms of the number of links in the chain.

Consider a configuration in which the system in Fig. 1 lies
on a plane, and the axis of rotation for each of the joints is
orthogonal to this plane. Define a coordinate frame attached to
an arbitrary link k. This frame has the x axis along the
direction of rotation, the y axis in the direction of a vector
from joint & — 1 to joint k, and the z axis in a direction
orthogonal to both the x and y axes. The state of the system at
joint k is a three-dimensional vector x = [x(1), x(2), x(3)}, in
which x(1) is a moment in the x direction and x(2) and x(3)
are forces in the y and z directions, respectively. For
simplicity, the argument &, which identifies the joint at which
the state is defined, is omitted. The corresponding costate is A
= [A(1), A (2), A(3)] where A(1) is a rotational acceleration
along the x axis, and A(2) and A(3) are linear accelerations in
the y and z directions.

The spatial transition and inertia matrices are

1 0 —-! I 0 —mp
¢=|0 1 0 M= 0 m 0 (85)
0 0 1 —mp O m

in which / is the length of link k, m is the link k mass, I is the
link k inertia about joint k, and p is the scalar distance from
joint k to the link & mass center. For simplicity, the bias force
and accelerations terms b and n are set to zero.

State propagation to cross a link is achieved by means of the
equation z — ¢z which in x, y, z component notation becomes
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z(1) = z(1) — /z(3). Observe that the components z(2) and
Z(3) do not change in the propagation step. Spatial inertia
propagation is achieved by the matrix equation P — ¢P¢ 7 +
M in which the spatial inertia (covariance) matrix is

P(l) P@2) P4
P2) P@) P(5)
P4) P(5) P(©)

P= (86)

Since P is symmetric, it can be characterized by a total of six
parameters (in the planar case). In terms of these parameters,
the spatial inertia propagation equations become P(1) —
PP(6) + I, P(2) = —IP(5), P(3) = P(3) + m, P(4) = —
IP(6) — mp, P(6) — P(6) + m. Note that the preceding
computations are simplified by the conditions that P(1) =
P(2) = P@) = 0 just before the propagation step is
conducted. This follows because of HP* = 0 and P*HT =
0, which imply that the components of the spatial inertia P+ in
the joint axis direction vanish. The Kalman gain is computed
by means of the equations D - HPHT and G = PHTD"!
which in scalar notation becomes D — P(1), g(1) = 1, g(2)
—+ P2)/P(1), g(3) — P4)/P(1).

State update to cross a joint is achieved by means of the
equation z = z + Ge~ in which e~ is the innovations process.
In scalar notation, this becomes z(1) = 7, z(2) = z(2) +
gR)e”, z(3) = z(3) + g(3)e~. The residual process is
computed by e* = e~ /D. The spatial inertia update is
accomplished by means of P » P — PHTD~!HP which in
terms of component notation becomes P(1), P(2), P(4) — 0,
P(3) = P(3) — g(2)P(2), P(5) = P(5) — g(3)P(2), P(6) ~
P(6) — g(3)P(4). Note that P(1) = P(2) = P(4) = 0 after
the update step, because the absence of measurement noise
allows the Kalman filter to produce an estimate that has no
error in the direction of rotation at any given joint. A
coordinate transformation is performed immediately after the
update step in order to transform the state estimate into the
coordinate frame of the next link.

In the smoothing stage, the costates are propagated back-
ward by means of A(3) = A(3) — /\(1). After the propagation
step, the costates are transformed to the coordinate frame of
the next link. The joint acceleration is then computed by @ —
et — N1) — g(2)A(2) — g(B)A(3). This acceleration is then
used to update the costate A(1) = A(1) + a. Note that only the
joint-axis component of the costates needs to be updated at any
given joint, and that the components in the other two axes
remain unchanged.

The number of arithmetic operations required per link in an
N link system is summarized in Table II.

The count for the update equations for the state, the inertia,
and the costate includes the number of operations required for
the coordinate transformations required to cross joints. Based
on the above count, an approximate estimate of 27N flops is
obtained for an N link system.

It is of interest to compare the above number of operations
with those required to compute the multilink system inertia
matrix, using (32), and to invert this matrix numerically. To
do this, assume that the state covariance matrix is character-
ized in the planar case by a minimal set of four parameters
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TABLE II
NUMBER OF ARITHMETIC OPERATIONS PER LINK REQUIRED BY
BRYSON-FRAZIER SMOOTHER FOR A PLANAR CHAIN

Add Multiply Divide
State propagation 1 1 0
Inertia propagation 4 3 0
Gain 0 0 2
Innovations 1 0 0
Residuals 0 0 1
State update s 6 0
Inertia update 10 9 0
Costate propagation 1 1 0
Joint acceleration 3 2 0
Costate update 3 4 0
Total 28 26 3
TABLE Il

NUMBER OF ARITHMETIC OPERATIONS REQUIRED FOR ASSEMBLY OF
N-BY-N INERTIA MATRIX

Multiply

Add Repetitions
Spatial inertia propagation
Mass 1 0 N
Mass center 2 1 N
Rotational inertia 3 3 N
State propagation 1 1 NWN + 1)/2
State update 2 4 NN + 1)/2

representing the mass, mass center location, and rotational
inertia.

To form the diagonal elements of the inertia matrix, all of
the above steps except the last two (state propagation and
update) must be repeated N times. The last two steps must be
repeated a total number of N(N + 1)/2, to compute the off-
diagonal elements. This leads to an estimate of 2N(N + 5)
flops to assemble the full inertia matrix (see Table III). It is
assumed that the inertia matrix is then expressed as the product
of two mutually adjoint triangular matrices. This typically
requires N3/3 flops (using Cholesky decomposition, for
instance). Then, N? flops are assumed to be needed to obtain
the solution of two triangular systems of linear equations. The
combination of the foregoing three steps of inertia matrix
assembly, decomposition as the product of two triangular
matrices, and solution of two triangular set of equations is
estimated to require a total N3/3 + N2 + 2N(N + 5) flops.

A comparison between the above two operation count
estimates is shown in Fig. 4. The number of operations is
shown for the two approaches, as a function of the number of
links. Notice that the filtering and smoothing approach
requires more computations than the other method for a small
number of links. This is to be expected because there is an
inherent overhead (Riccati equation, outward coordinate
transformations, etc.) required to set up the filtering/smooth-
ing computations. The benefits, in terms of operation count, of
the filtering and smoothing approach become apparent for
large N. For N = 35, the filtering and smoothing approach
requires fewer computations.

The above comparison is not intended to be definitive.
Understanding of the numerical properties of the filtering and
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Fig. 4. Operation count for two methods.

smoothing approach is in its infancy. Much work is therefore
required before a more complete comparison can be made.
The above initial comparison, however, provides motivation
required to more completely explore the potential of the
approach.

XIII. RELATIONSHIP TO OTHER WORK

The basic reference on filtering is, of course, Kalman’s
original paper [1], which derives the filter for discrete-time
systems with discrete data and which, in addition, introduces a
global framework (Riccati equation, Kalman gain, prediction/
correction, covariances, etc.) that underlies much of today’s
linear filtering and prediction theory. A similarly basic
reference for smoothing is [2]. A summary exposition of both
filtering and smoothing, as well as the sweep method for
solution of two-point boundary-value problems is provided in
[3]. The main contribution of the present paper is to recognize
that these filtering and smoothing techniques provide a unified
framework to solve recursively the fundamental robotics
problems of inverse and forward dynamics. This complements
many of the recursive and nonrecursive techniques currently
used to solve these problems [6]-[13].

Because they address forward dynamics (instead of the
more common problems of inverse dynamics), [6], [12], [13]
are very close in spirit to the present paper. In fact, the
recursive equations of [6] are very similar to the filtering and
smoothing solutions of Section VIII. The solutions advanced
here expand on the results of [6] in two areas: 1) recognizing
similarities with filtering and smoothing, and 2) providing
what is believed to be a more appropriate way to account for
the bias spatial forces and accelerations due to coriolis,
centrifugal, gyroscopic, and gravitational effects. Reference
(6] suggests that these effects be accounted for by conducting
an inverse dynamics computation prior to the forward dy-
namics solution. This has the possible drawback of requiring
that certain calculations (link-to-link coordinate transforma-
tions, spatial force and acceleration propagation, etc.) be
performed twice: once for inverse dynamics and again for the
forward dynamics problem. Hence two full recursions along
the entire span of the manipulator appear to be required. In
contrast, the recursive techniques advanced here embody these
effects in the bias terms b(k) and n(k) of the filter and
smoother equations. No advance inverse dynamics solution is
required, and a single inward/outward iteration is sufficient to
solve the problem. An additional contribution of the present
paper is to introduce a framework that, in addition to solving
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the forward dynamics problem of [6], also provides inverse
dynamics solutions.

Another result which is believed to be unique is the closed-
form evaluation of the inertia matrix and its inverse in terms of
estimation error covariances. This result suggests that numeri-
cal inertia matrix inversion can be avoided (or at least
performed recursively). This can be done if the emphasis is
placed instead on direct matrix-symbolic evaluation of the
inertia matrix inverse (as in Section X of the paper) or on the
filtering and smoothing formulas, which provide a construc-
tive procedure for determining joint accelerations from applied
moments.

Many of the works [7]-[11] presenting recursive solutions
focus primarily on the inverse dynamics problem. These
recursive methods lead either to the evaluation of required
joint moments from desired joint angle accelerations or to
evaluation of an inertia matrix for an equation of the form
(22). The forward dynamics problem is not addressed directly.
Instead, the usual approach requires a numerical inversion of
the inertia matrix. This causes the resulting forward dynamics
algorithms to be O(N?3), i.e., the number of computations is
proportional to the cube of the number of links. This means
that for large N the computations required may be dominated
by the matrix inversion process.

Yet another point of view with regards to robot dynamics is
that initiated by [14], which advances the notion that explicit
scalar equations of motion can be obtained for common
manipulators such as the JPL/Stanford and PUMA arms.
These equations are explicit in the sense that the scalar
elements of the inertia matrix (as well as other terms
accounting for coriolis, centrifugal, and other effects) are
evaluated symbolically in terms of link mass and inertia, mass
center offsets, etc. The end results of this approach are
algebraic expressions [15], [16] for each of the inertia matrix
elements.

Such explicit equations can lead to substantial computational
savings. One key reason for this is that terms in the inertia
matrix which do not depand on the instantaneous value of the
joint angles (reflecting the manipulator configuration) can be
grouped together and simplified. These terms need be evalu-
ated only once at the beginning of the model application. The
same value of those terms is then retained after this initializa-
tion. This is a feature that less explicit equations do not have.
However, because of the complexity of the trigonometric and
algebraic operations required, manual derivation methods
cannot be used easily, and symbolic manipulation programs
[15], [16] that conduct machine differentiation of the Lagran-
gian are typically used. One of the challenges that remains
after symbolic evaluation of the inertia matrix elements is the
numerical inertia matrix inversion required to solve the
forward dynamics problem.

The recursive equations developed in Section X can, in
principle, be used to arrive at direct explicit evaluation of the
scalar elements of the inertia matrix inverse. A symbolic
manipulation program could be set up to conduct the opera-
tions in (83) symbolically, as opposed to numerically. The end
result would be a set of equations of the form (69) where the
accelerations a'(k), a(k), and a3 (k) would be determined as
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explicit functions of the joint angles, the link masses and
inertias, the link dimensions, etc. Such results would eliminate
the need to invert the inertia matrix numerically, and could
lead to significant computational savings. Savings comparable
to those achieved in [15], [16] for explicit evaluation of the
inertia matrix could be achieved for a similarly explicit
evaluation of its inverse.

XIV. CoNcLUDING REMARKS AND FUTURE DIRECTIONS

The primary objective of the present paper has been to point
out the equivalence between recursive robot dynamics meth-
ods and the filtering and smoothing techniques from state
estimation theory. In the view of the author, establishing
relationships between ideas and concepts that had been
previously thought of as being unrelated is one of the more
interesting efforts that can be made. This typically leads to the
discovery of new physical and mathematical insights that
would otherwise be very difficult to discover. An interesting
example of this is the equivalence of spatial inertia and
covariance. Another example, which is currently under
investigation and which will be reported in the near future, is
the relationship between manipulator redundancy (having
more than six joints) and the notions of observability and
controllability arising in state estimation and control theory.

A closely related objective has been to show that the robot
arm dynamics computations can be organized with the very
well understood and highly developed framework initially
introduced in [1], [2]. Extensive analytical and computational
experience exists with such an architecture. The architecture is
very easy to understand both mathematically and physically.
This is one of the primary reasons for its popularity. In
contrast, robot dynamics solutions are usually not as easily
understood because they are not cast within an architecture
that is as recognizable. In addition, standardized software [17]
is widely available to implement the filtering and smoothing
techniques. The results of this paper make it relatively easy to
use this software to set up dynamical models for simulation
and control design for arbitrary robot arms.

The paper does not claim to advance techniques that are
numerically superior to the existing ones. Rather, one of the
results is to show that the existing methods can be derived and
analyzed within the framework of estimation theory. This
leads to a better understanding of the methods. In specific
cases, the recursions outlined here can be shown to be
equivalent to very efficient computational methods. This point
is illustrated for example in Section VII by showing that the
inverse dynamics solutions presented here are equivalent to the
composite rigid body method advanced in [11] for its
efficiency. The point is further illustrated in Section X by
showing that the forward dynamics approach of [6] can be
viewed as an extension of this method.

Although no particular attempt is made to advance the
filtering and smoothing solutions for their numerical effi-
ciency, these techniques could ultimately lead to better
numerical algorithms for robot dynamics. The Kalman filter is
quite popular, but it is not always the fastest recursive
algorithm for state estimation. A wide variety of *‘fast”
algorithms exist [17], [18] that are faster and more stable
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numerically than the Kalman filter. These algorithms however
are also rooted in estimation theory. It would be of interest to
investigate the computational improvements that may result
from application of fast algorithms to the recursive robot
dynamics problem. While such an investigation is not within
the scope of this paper, the necessary analytical foundation has
been developed so that such an investigation can be conducted.

The approach outlined here has been extended to rigid
multibody configurations more general than the serial manipu-
lator analyzed in this paper [19], [20]. Recursive dynamics
solutions to systems of multiple joint-connected rigid bodies
forming a topological tree are provided in [19]. Closed-chain
systems arising in the problem of robotic dual-arm dynamics
are analyzed in [20]. This is a step in the right direction.
Future research might lead to extensions to more general and
possibly flexible multibody systems.

The results of this paper suggest several areas for future
research: 1) development of methods for symbolic evaluation
of the scalar elements in the inverse of the inertia matrix, as
opposed to the current ones that focus on the elements of the
inertia matrix itself, to simplify system simulation as well as
control design; 2) extensive numerical studies with the
proposed methods to establish the same level of confidence as
exists for current methods; and 3) development of forward and
inverse dynamics solutions based on ‘‘fast’’ filtering and
smoothing techniques which involve direct propagation of the
filter gain as opposed to indirect methods requiring covariance
propagation. A full investigation of these areas will require
much work and will be quite interesting.
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