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ABSTRACT

Random field models provide an alternative to the deterministic models of classical
mechanics used to describe multibody robot arm dynamics. These alternative models can be
used to establish a relationship between the methodologies of estimation theory and robot
dynamics. A new class of algorithms for such fundamental robotics problems as inverse dy-
namics, inverse kinematics, forward dynamics, etc. can be developed that use computations
typical in estimation theory. The central result is an equivalence between inertia and covari-
ance. This allows much of what is known about covariance factorization and inversion to be
used for inertia matrix inversion. In particular, it is known that the difference equations of
Kalman filtering and smoothing factor and invert recursively the covariance of the output of
a linear state-space system driven by a white-noise process. Here, it is shown that similar
recursive techniques factor and invert the inertia matrix of a multibody robot system. The
random field models are based on the assumption that all of the inertial (D’Alembert) forces
in the system are represented by a spatially distributed white-noise model. They are easier
to describe than the models based on classical mechanics, which typically require extensive
derivation and manipulation of equations of motion for complex mechanical systems. In con-
trast, with the spatially random models, more primitive (i.e., simpler and less dependent on
mathematical derivations) locally specified computations result in a global collective system
behavior (as represented by the inertia matrix) equivalent to that obtained with the deter-
ministic models. The primary goal in investigating robot dynamics from the point of view
of random field estimation is to provide a concise analytical foundation for solving robot

control and motion planning problems.



1 Introduction and Summary

This paper examines from the point of view of random field estimation the methods developed
recently by the author [1]-[9] to solve the problem of forward dynamics for nonlinear joint-
connected robot arms and multibody systems. The forward dynamics problem is to find
the joint-angle accelerations from the applied joint moments. Solution of this problem is of
interest in such application areas as robotics simulation and control design. The problem is
solved by the recursive filtering and smoothing techniques of state estimation theory (10, 11]
for linear, discrete-time, state-space dynamical systems. The filtering stage takes the applied
joint moments as inputs (measurements in the Kalman filter) to produce a sequence of
spatial (rotational and translational) constraint forces acting at the joints of the system.
The smoothing stage takes the innovations process resulting from the filter as an input and

produces a set of spatial accelerations and a corresponding set of joint-angle accelerations.

One of the reasons for using filtering and smoothing techniques is to provide what
is believed to be a better means to formulate, analyze and understand multibody robot
dynamics. It is known that the relationship between joint-angle accelerations at any given
time and the joint moments applied at the same time is an affine rela;tionship. One of the
initial steps of the paper is to develop a spatially recursive state space model to characterize
this relationship. Development of the state space model makes it possible to apply many
of the ideas and concepts (transition matrix, prediction, filtering, smoothing, etc.) from
the state estimation theory for linear systems. These concepts have proven themselves to
be ideally suited to investigate discrete-time systems. They are also very useful in solving
multibody robot dynamics problems. The filter and smoother are very easy to understand,
and extensive analytical and computational experience exists with this architecture in other
application areas. Standardized software also is available that can be used to set up readily

the required computations.

The table in Fig. 1 shows in perspective the context in which the random field esti-
mation approach fits within three other approaches to multibody robot dynamics. Outlined
on the extreme left of the figure is the approach of Newton-Euler, in which Newton's laws

for a single particle are used as a starting point. These laws are combined with the geomet-



rical constraint that there is no relative motion between two points on the same rigid body.
Constraint forces between bodies are then eliminated in order to obtain a set of equations

of motion of the form
- - M(@@d=1

in which # are the joint angles; § are the corresponding joint-angle accelerations; T are the
applied moments; and M is the composite multibody system inertia matrix. For simplicity,
without loss of generality (1], the forces and accelerations due to nonlinear velocity depen-
dent terms are not included in this equation. An alternative approach, shown on the second
column of the diagram, is based on Lagrangian mechanics, which consists of finding an ex-
tremum for the Lagrangian of the system. The first variation of the Lagrangian leads to the
Euler equation as a necessary condition for extremality. Application of this equation to the
multibody problem leads to the equations of motion. These equations are exactly the ones
obtained by the Newton-Euler approach. The Lagrange and Newton-Euler approaches are
therefore equivalent. However, the Lagrangian approach involves a higher-level formulation,
in the sense that the statement of the approach is simpler (with simpler assumptions). It also
does not require that constraint forces and moments be eliminated by manipulation of equa-
tions. This elimination takes place automatically. This is in contrast with the Newton-Euler
approach, in which the constraint forces and moments between bodies must be eliminated
from the equations of motion. Both the Newton-Euler and Lagrange approaches lead to a
set of equations of motion in which the composite system inertia matrix M is present. How-
ever, there is nothing inherent in the multibody dynamics problem that makes the presence
of such a matrix inevitable. The reason this matrix is at times thought to be indispensible
in multibody dynamics problems is that the most popular approaches (Newton-Euler and

Lagrange) for derivation of equations of motion involve this matrix.

The approach of this paper, outlined on the third column of the diagram, leads to a
set of equations of motion in which the composite inertia matrix is never assembled. Instead,
the joint-angle accelerations are éornputed recursively in terms of the applied joint moments.
There is no intermediate step in which the inertia matrix is computed and then inverted. It

can be shown [1] that this recursive process is equivalent to a set of equations of motion of



the form
§ = M~YT

in which the right hand side is evaluated directly, without resorting to numerical assembly
and inversion of the matrix. This is distinctly different from both the Newton-Euler and
Lagrange approach, in which the inertia matrix appears on the left side of the equations of

motion.

The random field estimation approach is at a higher level in the same sense that La-
grangian mechanics is at a higher level than Newtonian mechanics. The estimation problem
involves optimization in the same sense that the Lagrangian approach involves optimiza-
tion. The estimation approach starts out with a spatially random model and proceeds to
the development of a Fredholm matrix equafion as a necessary and sufficient condition for
optimality. Solution of this Fredholm equation requires the inverse of a covariance matrix,
which is equivalent to the composite multibody robot system inertia matrix. Recursive fac-
torization and inversion of this matrix is achieved by the filtering and smoothing algorithms

of this paper.

Closely related to the random-field estimation approach is a two-point boundary-value
problem and its solution, outlined in the fourth column of Fig. 1. The two-point boundary-
value problem is very similar to those which result as necessary and sufficient conditions
for optimality in quadratic optimization problems [1, 11]. The approach involving a two-
point boundary-value problem, studied in detail in [1], bears the same relationship to the
random field estimation method of this paper that Newton-Euler classical mechanics bears

to Lagrangian mechanics.

The main motivation for the author’s interest in the random-field estimation approach
to robot modeling is that it leads to a high- level mathematical framework for describing the
complex mechanics of a multibody robot system. This framework, referred to as a spatial
operator algebra, is used to some extent in this paper and is more completely developed in
(8]- One of its key features is that it reduces by at least an order of magnitude the number of-

symbols and operations that the user has to see in order to solve robot modeling problems.



A concrete example of this ability to solve complex problems with simple spatial operator
notation is the closed-form evaluation of the manipulator inertia matrix contained in Sec.
11. Another feature of the spatial operator algebra is that high-level operator equations can
be converted by inspection into spatially recursive algorithms for performing the required
computations. Thus, every mathematical expression involving operators has a corresponding
equivalent spatially recursive mechanization where the number of arithmetical operations

increases only linearly with the number of degrees of freedom.

The ultimate objective is to solve problems in automated robot motion planning and
control. The solution to these problems are typically based on robot models. Random field
estimation provide a mathematical foundation to concisely state and solve these problems.
Applications to decoupled robot control are discussed in {27]. Statistical mechanics models
that systematically account for interactions with objects in the environment are discussed in
{28]. Application of these statistical models to the i)roblem of motion planning are currently

under investigation.

2  Configuration and Problem Statement

Three typical systems formed by rigid bodies connected by joints are illustrated in Fig. 2.
These systems are models for a wide class of robotic manipulator and end-effector systems.
The serial chain of Fig. 2 (a) can be used to represent a single manipulator. The topological
tree of Fig. 2 (b) can represent several arms mounted on a mobile robot. The topological
graph of Fig. 2 (c) can represent several arms or fingers moving a commonly grasped object.
The serial chain system is used in this paper to develop the random field estimation approach.

Topological trees and closed-chain systems are analyzed in [3, 5, 6] by the same methods.

The serial chain system has N bodies numbered 1,...,N. It is connected together by
N joints also numbered 1,...,N. Joint ¥ is the last in the sequence, and it connects body
N to an immobile base. As a different option, joint N could also be a fictitious joint that
models the motion of the base body with respect to an inertial frame of reference. A given

rigid body & in the collection is characterized by a mass m(k), a vector p(k) from the inner



joint & to the body k mass center, an inertia matrix J (k) about the inner joint, a vector

{k,k —1) from the inner to the outer joint, and a unit vector 2(k) along the axis of rotation.

The forward dynamics problem is to find the joint angle accelerations é(k), given the

applied joint moments T'(k).

3 State Space Model

It is known that, at a given instant in time, the relationship between applied moments and
the resulting accelerations is affine {1]. Recall that an affine mapping relating the quantities
z and y is of the form y = {z + ¢, in which £ is a linear operation and c is a constant.
Therefore an affine mapping is very similar to a linear mapping and differs from it only
because of the presence of the constant term c. One of the key ideas of this paper is to
use a state space model to characterize this affine relationship. This approach allows the
application of highly developed techniques from linear system theory to solve multibody
robot dynamics problems. It is interesting to note that the linear system theory applies,

although the multibody robot system is highly nonlinear.

The first important step leading to the filtering and smoothing methods is to develop
a spatially recursive state space model for the dynamics of each body. Consider a typical

body k as shown in Fig. 3.

The states in the model are the 6-dimensional spatial forces f(k) = [N*(k), F=(k)]"
consisting of the three moments N(k) and the three linear forces F(k). The symbol f(k)
denotes the force acting on body # at joint k& due to the adjoining body k + 1. Similarly, the
symbol f(k — 1) denotes the spatial force acting on body & — 1 at joint & — 1 and due to the
adjoining body k. Spatial forces are propagated from the outer joint & — 1 to the inner joint
k by means of a 6 x 6 transition matrix

b(k,1) = (; 5 )

defined in terms of the vector {(k,7) from joint k to joint 7. The cross-product operation



with the vector I(k,17) is denoted by the 3 x 3 matrix I(k,7). The matrix o(k, z) satisfies the

properties
¢k, i) =-@(k,m)d(m,i); &7 (k,3) = ¢, k); bk, k) =1
usually associa.ted;iigh a transition matrix for a state space linear system.

Costates in the model are the spatial accelerations a(k) = {w*(k),9=(k)]", in which
(k) and 9(k) are the inertial time derivatives of the angular and linear velocities w(k) and
v(k). The spatial acceleration at joint k is defined on the outboard (toward the tip of the

system) side of joint k.

The inertia properties of the typical body k in Fig. 3 are embedded in the following

spatial inertia matrix [1]

(T mmEe)
M(¥) (—m(k)ﬁ(k) m(k)f_)

This is a 6 x 6 matrix whose diagonal elements depend on the rotational inertia J (k) and
~ on the mass m(k), and whose off-diagonal elements depend on the mass and on the vector
p(k) from joint % to the mass center of body k. The spatial inertia matrix very succinctly

accounts for the rotational inertia and mass properties of body k& about joint %.

4 Two-Point Boundary-Value Problem

The equations of motion for a robot arm are defined by the following two-point boundary-

value problem:

fork = 1---N

SR = ¢k k—1)f(k= 1)+ M(k)a(k) + b(F)
T(k) = H(k)f(k)

| end loop




a(N+1)=0

fork = N.--1
a(k) = ¢"(k+ 1L, k)alk + 1)+ H*(k)d(k)
end loop

This problem is véty similar to those investigated extensively in the areas of quadratic
optimal estimation and control [11]. The problem is defined in terms of states and costates.
Boundary conditions are satisfied at two distinct points: the base of the system, where
the accelerations vanish; and the terminal body, where the forces vanish. These free-fixed
boundary conditions correspond to an immobile base body. Other boundary conditions
can be handled easily within the same general framework {3, 5, 6, 30]. For example, free-
free boundary conditions (in which both the base body and the terminal bodies are free to
accelerate) can be stated by imposing suitable constraints on the states and costates. Such
free-free boundary conditions are suitable for applications in which the base of the system is

unattached.

There is a one-to-one map between the boundary-value problem just described and
those of estimation theory [1]. This map is illustrated in Fig. 4. The spatial forces in the
dynamics problem are the states of the system. The spatial accelerations are the costates.
The applied joint moments correspond to the measurements or the outputs of the system.
The equivalence between measurements and applied moments makes sense because: mea-
surements are those quantities that are assumed to be known in the estimation problem;
whereas applied joint moments are assumed to be known in the dynamics problem. The
transition matrix for a discrete-time state space system is typically defined in terms of the
time Interval between samples. The transition matrix for the dynamics problem is defined
in terms of the spatial interval, the 3-dimensional vector from the inner to the outer joint
in a given body. This matrix can be used to propagate inwardly the forces within a body
and its transpose can be used to propagate outwardly the velocities and accelerations. The
use of the term intrabody Jacobian for this matrix is an extension of terminology used in
robotics.. The process error covariance in estimation problems corresponds to the spatial
inertia. Known deterministic inputs correspond to the bias spatial force due to nonlinear

gyroscopic and velocity dependent effects. The state-to-output map projects the spatial force



at any given joint into the active joint moment applied at the same joint.

It is known [11] that boundary-value problems of the type just described can be solved
by means of Kalman filtering and smoothing. An easy way to show this is to use what is
referred to in [11] as the sweep method. This method begins with the assumption that the
states f(k) and th; .costa.tes a(k) are related by

f(k) = z(k) + P(k)e(k)

In this relationship, z(k) plays the role of the filtered state estimate in the Kalman fil-
ter, and P(%) plays the role of the corresponding filtered state estimation error covariance.
The filtered state estimate is generated by a spatial Kalman filter. The estimation error
covariance is generated by the Riccati equation. The spatial accelerations a(k) are gen-
erated by a Bryson-Frazier smoother. These results can be obtained by substituting the
above relationship between states and costates into the two-point boundary-value problem
above. Alternatively, they can be developed using the recursive mass matrix factorization

and inversion results of the following section.

The equations of motion are now written in a more compact form. We define M as
the 6V x 6N block diagonal matrix defined as M = diag[M(L),..., M(N)] whose typical
6 x 6 diagonal block M(k) is the spatial inertia of body k about joint k. The matrix ¢ is a

causal (lower triangular) matrix defined as

(0 0o o 0o o) o 0
£s 2 0 ¢(3,2) ... 0 0| g=(—g)= \ .
\ f; 6 ¢(n7;—1) (:)) ¢(N,1) o(V,2}

The composite state-to-output map H in Eq. (5.4) is defined as H = diag[H(1),..., H(N)).
The appropriately dimensioned identity is denoted by I throughout this paper. Then,

V = ¢"H



a = ¢$"HO

f = oMa=¢M¢yH"G

T = Hf=M§
where,

M= HpMs~H"

Here, M is the robot inertia (mass) matrix. The composite multibody robot inertia matrix
can be used to obtain the kinetic energy of the robot useful in the methods of classical

mechanics. The total kinetic energy in the system is given by
N

K.E. =1 > V*(k)M(k)V(k)
k=1

in which V(k) is the spatial velocity on the negative side (outboard, toward the tip) of joint
k, and M(k) is the spatial inertia of body k about joint k. More succinctly, the kinetic

energy can be expressed as
KE =1/ V'MV

in which V' = [V(1),..., V()] is the composite vector of spatial velocities. Recall, however,

that the spatial velocities are given by
V =g¢"H"0
in terms of the joint-angle velocities §. This leads to

K.E.= 1/, §* M

10



5 Spatially Random Model

The point of departure for the random field estimation approach to robot dynamics is the

following state-space model for a typical body k in the system

X(k) = ¢k k—1)X(k—=1)+ W(k) (5.1)

T(k) = H(k)X(k) (5.2)

in which the moments T'(k) are due to external sources acting at the joints. The state X (k)
of the system is a 6-dimensional vector of spatial forces, formed by three moments and three
linear forces. The above is a linear model that reflects a balance of the forces that are acting
on body k. The inertial forces are represented by a spatially distributed white-noise process

W (k) whose mean and covariance are
EW(k)] =0,  EW(k)W= (k)] = M(k) (5.3)

While the mean value of the inertial force is assumed to be zero here, in general it may be
set equal to the bias force which accounts for nonlinear gyroscopic and velocity dependent
terms, as well as effects due to external forces acting on the body [1]. The covariance of the
inertial force is set equal to the spatial inertia matrix M (k). The output, or measurement,
Eq. (5.2) completes a description of the spatially random model. In this model, the active
joint moment T'(k) plays the role of the measurement in a linear state space system. Since
the joint moments are known exactly, the corresponding measurement equation Eq. (5.2) is

free of measurement noise.

This model can be used for one-step prediction of the spatial force at the inner joint of
a body, given the spatial force at the outer joint. The model has a built-in error represented
by the term W (k) in this equation. This error is due to the fact that the body is in general

moving and undergoing acceleration. This acceleration causes a D’Alembert force W (k).

The model in Eq. (5.1)-Eq. (5.3) above takes the point of view of a local observer

whose perception is by definition confined to the location of joint k itself. This observer

11



is assumed to know nothing about the applied moments acting at the joints or about the
accelerations acting on any of the adjoining bodies. The observer assumes that its own
acceleration at joint k is uncorrelated with the acceleration at the remaining joints. It should
be pointed out that the white-noise model is only an “a priori” model. There is uncertainty
in the inertial forces only before the estimation process is conducted. After estimation takes

place, this uncertainty no longer exists.

The above model can be cast in the more compact notation
X = ¢W,; T=HX (5.4)

in terms of the composite vectors W = [W(1),...,W(N)], X = [X(1),...,X(V)] and
T =[TQ1),...,T(N)]. The composite process error vector W has a mean and covariance

given by

EW)=0;, EWW =M

The model in Eq. (5.4) is based on the assumption that the D’Alembert force due
to the acceleration of body k£ is an equivalent lumped quantity that is concentrated at the
joint k. In reality, there is an inertial force at every location z of the spatial domain 0 of
definition of the system. The D’Alembert force within a given body is therefore spatially
distributed over the body. To take into account this spatial distribution, it is possible to

recast Eq. (5.4) as the following integral operator model:
T(k) = fﬂ H(k)$(k,z)Bw(z)dz; T = HéBuw

in which £ is the spatial domain of definition of the system; w(z) is the D’Alembert force
at a given spatial location ; and B is the 3 x 6 matrix B = [0, I]*. The D’Alembert force

is a white-noise random field characterized by its mean value and covariance
Elw(z)] =0; E[w(z)w(z)] = p(z)6(z - y)

where p(z) is the mass density at location z, and &§(z — y) is the impulsive delta function.

12



In operator notation, this becomes
E(w)=0; Flww"]=pl

This integral operator model, in which the inertial forces are modeled as a random field,
is more fundamental than the equivalent model in Eq. (5.3) in which the inertial forces
have been lumped at the joint k. The integral operator model views the inertial force at
an arbitrary point z of the system as an input. The output of the model is the active
joint moment at a given joint k. The input at z and the output at k are related by the
kernel H(k)¢(k,z)B of the integral operator H$B. The active joint moment T(k) is the
superposition of the D’Alembert forces at all of the points z in the system. This relationship

is linear, even though the original system is highly nonlinear.

6 Equivalence Between Covariance and Inertia

One of the central results of the paper, is to establish an equivalence between the composite
multibody robot system inertia matrix and the covariance of the output of the linear system

model just described.

Lemma 1: The state covariance matrix § = E[X X*] = ¢M ¢~ can be expressed as
S=R+$R+ R¢ (6.1)
where
$S¢—1

The 6N x 6N block-diagonal matrix R = diag[R(1),..., R(IV)] has blocks R(k) which are

13



generated recursively by

R(0)=0
for k_ = 1...N
R(k) = ¢(k,k—1)R(k—1)¢~(k,k — 1) + M(k)
"“end loop

(6.2)

Proof: Observe that Eq. (6.2) can be rewritten in the form
M = R — &4RE;
Pre and post multiplying this by ¢ and #* leads to
S = ¢R¢" — ¢EsR°E; = ($+ )R( + I)" — 6RE"

The result follows from expanding this. |

This implies im that the typical element kernel R(k,j) of S is given by

Typical Element of State Covariance Matrix
i<k ]2k
Rk, ;) ¢(k, J)R(5) R(k)$™(7, k)

The mean value and the covariance of the output T' of the linear system in Eq. (5.4) is given

by
- E(T)=0; E[TT)=M

which follows because the system in Eq. (5.4) is a linear system and because E(W) = and

E[WW*] = M. This implies the central result of this section.

Lemma 2: The covariance of the output of the linear system model in Eq. (5.4) equals

14



the composite multibody robot system inertia, 7.e.,
E[TT*| =M (6.3)

Hence, the inertia _matrix can be factored and inverted using techniques that factor and

invert the covariance matrix.

This result has profound implications. It establishes the equivalence between inertia,
one of the key concepts in mechanics, and covariance, one of the key concepts in probability
and statistics. There is a fundamental physical reason for this which is investigated in more
detail in {1]. An immediate and practical implication of the result is: the inertia matrix
can be inverted by filtering and smoothing methods that have been developed to invert
covariance matrices [12]-{21]. Much of this background has been developed for problems
in communication theory, information theory and signal processing. The references provide
a sample of these results. One of the central ideas which emerges from these references is
that the covariance (or, equivalently, the multibody body inertia matrix) can be factored
as M = (I + K)D(I + K~) in which K is a lower-triangular “causal” matrix and K~ is its
anticausal adjoint. The matrix D is diagonal. This is strongly reminiscent of the Gohberg-
Krein factorization [13]. Both the matrix K and D can be generated by means of a Kalman
filter. This result underlies much of today’s research {19] on linear filtering and prediction

theory.

7 Conditional Mean Estimation

The estimation problem to be solved here is to estimate the process error vector W and
the state X, given all the measurements T. This corresponds to the dynamics problem
of finding the inertial forces (due to accelerations) and the spatial forces, given the joint
moments. The optimal estimates are obtained by means of the conditional expectations

E(W/T) and E(X/T). It is relatively simple to compute these two conditional expectations.

15



By methods outlined in {12], it can be established that
E(X/T)=¢6T (7.1)
in which G is the “Kalman” gain
A = -1
G=SH*M (7.2)

This is the estimate of the spatial forces given the applied joint moments. The effect of
measurements is accounted for in the term involving the Kalman gain in Eq. (7.2). The
Kalman gain determines the weight of the observation to arrive at the state estimate E (X/T).
Observe that the N x N matrix M that needs to be inverted to compute the Kalman gain

is the composite multibody robot system inertia matrix defined in Sec. 4.

To examine the analogy more closely, recall that the joint-angle accelerations are

§=M"T (7.3)
The joint-angle accelerations § and the spatial accelerations o = [e(1),...,a(V)] at the N
joints are related by [1]

o= ¢ H0 (7.4)

.Thus, the estimate E[{X/T] is given by
E[X/T) = $Ma = f

That it is precisely the spatial force f at the joints, and from now on we adopt the terminology

f when referring to the estimate E[X/T].

It is of interest to distinguish between the “fictitious” spatial force X emerging from
the spatially random model and the corresponding conditional mean estimate f. These two
quantities are very closely related, but they are not identical, They have the same physical
units. Furthermore, X (k) and f(k) are defined at the same joint k. They differ because

X (k) is a “fictitious” random quantity in the sense that it emerges from the spatially random

16



model, whereas f(k) is a deterministic estimate based on the information about the joint
moments T. Solutions to dynamics problems seek to compute the estimate f. This estimate
corresponds to the spatial forces acting in the physical mechanism. The random state vector
X (k) is a quantity that is useful in setting up the spatially random model but which does

not correspond to the forces present in the physical mechanism.

To compute the covariance of the estimation error observe first that
e S X~ f=(I—-GH)¢W
is the estix;‘la.tion error. Its corrésponding covariance is
P = Ele,e]l= (I -GH)S(I - GH)" (7.5)
Alternatively, this becomes |
P=(I-GH)S=8§I-GH)"=8~-8SH"M'HS

Note that HP =0, PH" = 0, HPH* = 0 which imply that the covariance of the estimation

error at the joints vanishes. This reflects the lack of measurement noise in the measurement

Eq. (5.2).

The conditional-mean estimate for the inertial forces is given by
E(W/TYE W = M¢H " M™'T
Continuing the dynamics analogy, the estimate for the inertial forces becomes
W=Ma

The covariance of the inertial force estimation error is obtained by arguments very similar

to those used to arrive at Eq. (7.5). Observe first that W — W =[] = Mg~ H* M H$|W is

17



the estimation error. The error covariance Q is
Q=M-MyH M H¢M

The foregoing are ‘batch” solutions to the estimation problem, in the sense that all of the
measurements are processed simultaneously. This implies that the composite system inertia
matrix must be inverted in a batch mode. Alternatives are the sequential filtering and

smoothing solutions outlined in the following two sections.

8 Sequential Estimation

Sequential solutions [1] process the measurements (the applied moments) one at a time. In
doing this, numerical inversion of the N x N system inertia matrix is not required. Instead,

the inertia matrix is factored as
M=({I+XK)D(I+K") (8.1)

in which D is an IV x N diagonal matrix, and K is a lower-triangular matrix. The matrices
K and D in this factorization are generated using a suitably defined Kalman filter. This
factors the inertia into the product of a causal factor (I + K), a diagonal matrix D, and the
anti-causal adjoint factor (I + K*). Once this factorization of the system inertia matrix is

achieved, the corresponding inverse can be computed easily. The central result is that
(I+K)y'=I-C

where £ is a lower-triangular causal matrix generated by the same Kalman filter that gen-

erates K. This implies that the inertia matrix inverse can be expressed as
M =(I-L)D I -L) (8.2)

To arrive at the factorizations in Eq. (8.1) and Eq. (8.2) requires some preliminaries which

are outlined below.
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The following Kalman filtering equations define P(k) which satisfies the discrete
Riccati equation, as well as the innovations covariance D(k), the Kalman gains G(k) and

K(k +1,k), the projection operators 7{k) and 7(k), and the transition matrix Wik +1,k):

([ P(0)=0

fork = 1.--N
P(k) = ¢(kk—1)P(k = 1)p(k, k — 1) + M(k)
D(k) = H(k)P(k)H"(k)
G(k) = P(k)H*(k)D-'(k)
Kk+1,k) = ¢(k+1,k)G(k)
k) = G(R)H(K)
k) = I—r(k)
(k+1,k) = d(k+1,k7F(k)
| end loop |

Define now the block-diagonal matrices P = diag{P(1),..., P(N)], D = diag{D(1), ..., D(N)],
G = diag[G(1),...,G(N)), 7 = diag[r(1),...,7(N)], and T = diag[7(1),...,7(:V})]. Note
that then

D=HPH, G=PHD™', r=GH, T=I-r

Also define
[0 0 0 0 0
$(2,1) 0 ... 0 0
K=£G, and £ 2 &7= 0 %(3,2) ... 0 0
\ 0 0 P(n,n—=1) 0
The transition matrix 9 is defined as
I 0 0

LR e

p=-g)r=| YD
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where
k=1
These matrices will be used in the sequel to establish the following identities. ~Lemma 3:

The matrices & arit.i.P are related by

S=P+¢P+ Pd*+ ¢KDK"¢ (8.3)
Proof: Observe that
TPT =TP
Then
P=CPE,+ M =EPE;+ M- KDK
Pre and post multiplying with ¢ and ¢" leads to the result. | |

Lemma 4:  The system inertia matrix M factors as {I + K]D[I + K|*, with the causal

matrix KX and the diagonal matrix D defined as

K =H¢G = HopK

Proof: Multiply Eq. (83) by H and H* and recall that D = HPH". |
Lemma 5: The “open-loop” and “closed-loop” transition matrices ¢ and % are related
by

v l=¢'+KH



Proof: Observe that

bl =Ty =T —EF=¢ ' +Er=¢"' + KH n

Lemma 6: The lower triangular factor I 4+ K can be inverted as
(I+K)y'=I-¢
in which £ is the lower triangular matrix
L=HyK
This also implies that K =L+ KL, K = L+ LK, and LK = KL.
Proof: Observe from Lemma 5 that ¢ — 1 = 4K H¢, and so

(I-L)I+K) =1~ HyK + (I - HYK)HoK =1 |

The above sequence of results are the necessary ingredients to establish the recursive

factorization of the inverse of the composite system inertia matrix as in Eq. (8.2).

9 Filtering and Smoothing

Typically, the composite system inertia matrix is inverted to solve what is referred to as the
forward dynamics problem. This problem consists of computing a set of joint angle acceler-
ations given a corresponding set of applied joint moments. The joint-angle accelerations §

and the applied joint moments T are related by

= —-L)DYI-L)T
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where § = [§(1),...,6(N )} is the vector of joint-angle accelerations. The factorization of
the inverse of the inertia matrix can be implemented using recursive filtering and smoothing
algorithms. These algorithms determine the joint-angle accelerations from the joint moments
by means of a two-stage computation. The first stage represents filtering and is characterized
by the factor (I —=%). The second stage represents smoothing and is characterized by the
factor (I — £*). '

Inward Filtering of Joint Moments to Produce Innovations

This stage produces an “innovations” process defined as
e=(I-L0)T
It produces also the filtered state estimate
z=9yKT

The components z(k) of 2z = [2(1),..., z(N)] satisfy the Kalman filter equations [1]

z(0)=10
fork = 1-.-N
z(k+1) = (k4 1,k)z(k)+ K(k +1,k)T(k)
end loop
The elements €(k) of the innovations vector ¢ = [¢(1),..., (V)] are defined as

e(k) = T(k) — H(k)z(k)

Multiplication of the innovations process by the inverse of the diagonal matrix D produces

the residuals
v=D

These residuals are processed in the smoothing stage that follows.
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Outward Smoothing of Residuals to Produce Joint-Angle Accelerations
Smoothing corresponds to multiplication of the residuals by the anti-causal factor (J — £*)

to obtain the joint-angle accelerations, i.e.,
=1-L"w (9.1)

A spatial difference equation which is based on Eq. (9.1) can be obtained by re-introducing
the costate variables defined earlier to be the spatial accelerations & = [a(1),...,a(N)] at

the N joints. The costate variables « and the residuals v are related by

a=v"Hv (9.2)
Use of this in Eq. (9.1) implies that
b=v-Ka

This last relationship expresses the joint angle accelerations in terms of the residuals and
the costate variables. Furthermore, Eq. (9.2) can be used to infer [1] that the joint-angle

accelerations and the costate variables satisfy the difference equation

( a(N+1)=0

fork = N.-.1

(k) = v(k)=K*(k+1,k)alk+1)
a(k) = ¢*(k+1,k)a(k+ 1)+ H(k)i(k)
. end loop

These equations are referred to as the Bryson-Frazier smoother equations [11]. Their appli-

cation to problems in robot dynamics is discussed in more detail in [1].

Physical Interpretation of Filtering and Smoothing Algorithms
To examine the physical interpretation, consider the following predictor-corrector form of

the filtering and smoothing techniques:

z(1}=0; P0)=0 (9.3)



fork =1 ---N
P*k—-1) — [I-Gk—-1)H(k-1)P(k-1) (9.4)
P(k) — ¢lkoe—1)PHk—=1)¢"(k,k— 1)+ M{k) (9.5)

D(k) — H(k)P(R)H"(k); G(k)— P(R)H(E)-1(k)  (9.6)

(k) — T(k)— H(k)s(k) - (e
v(k) — D7 (k)e(k) (9.8)
(k) — z(k) + G(k)e(k) (9.9)
z(k+1) — ¢(k+1,k)z"(k) (9.10)

end loop

The residuals and the Kalman gains are stored in this stage and used as inputs to the

smoothing stage.

o(N+1)=0 (9.11)
fork = N ---1 |
alk) = ¢"(k+1,k)ak+1) (9.12)
0(k) — (k)= G (k)a(k) (9.13)
a(k) — a(k)+ H*(k)d(k) (9.14)

end loop

The filtering process starts at a fictitious joint 0 attached to the tip body. The initial
conditions Eq. (9.3) for the filtered state estimate and for the spatial inertia both vanish. The
initial state estimate is zero, because there are no external forces and moments acting at the
initial joint. Since this knowledge is precise, there is no uncertainty, and the corresponding

estimation error covariance is zero. The initial condition for the Riccati equation is therefore
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zero. This is from the point of view of estimation theory. From the point of view of mechanics,
the spatial inertia at the initial joint is zero because by definition there is no inertia outboard
of this joint. From these initial conditions, the filtering equations proceed with the by now

classical predictor-corrector architecture of the Kalman filter, as illustrated in Fig. 3.

This correction involves updating the spatial inertia and state estimate. The equation
that updates the spatial inertia is Eq. (9.4). The spatial inertia is propagated by means
of the prediction step Eq. (9.5) in the Riccati equation. This predicted inertia is used
to compute the Kalman gain by means of Eq. (9.6). The prediction step in the Riccati
equation reflects the increase in the spatial inertia due to the addition of a body. From the
viewpoint of estimation theory, the prediction step reflects increases in the state estimation
error covariance, which are due to the build-up of uncertainty that occurs because the inertial
forces internal to body k& are assumed to be random. Knowledge of the covariance allows for

compensation of this uncertainty.

Correction occurs in crossing a joint from one body to the next. The state update
equation Eq. (9.9) combines in an optimal sense two estimates for the moment about the
joint axis. One of the estimates comes from the previously conducted prediction step. This
estimate has an inherent error with a known covariance P(k). The second estimate comes
from the measurement T'(k) itself and has no error. The error (innovations) term created
in Eq. (9.7) represents the difference between the actual moment (measurement) and the
predicted moment H(k)z(k). Note that the innovations process has the units of a pure
moment. In Eq. (9.9), the innovations process is multiplied by the Kalman gain to form
the correction term that is then added to the predicted state estimate to cross joint k.
Central to the correction step is the Kalman gain determined from the Riccati equation.
The Kalman gain governs the relative weighting between the predicted state estimate z(k)

and the correction term G(k)e(k).

The step of prediction involves crossing body & + 1 from joint k£ to joint £ -+ 1. The
state prediction equation Eq. (9.10) is used to propagate the state from the outer to the

inner joint. The predicted state is used in Eq. (9.7) to compute an innovations process.

An additional outcome of the filtering equations is the residual process, defined by



Eq. (9.8) in terms of the innovations process ¢(k) and the scalar D(k) about the joint k axis.
The scalar D(k) can be shown to be {1] the “articulated” inertia of [23, 24]. The articulated
inertia D(k) about joint axis k is the scalar inertia of the multibody sub-system outboard
of joint k assuming that 'the inward joints are locked and the outboard joints are free. It
is therefore the inertia of a very “floppy” fictitious manipulator where the joints outboard
of any gjven joint allow free rotation. The residual at joint & is an estimate of the joint &
angular acceleration, under the assumption that all of the future joints are locked. There is
an inherent potential error in this estimate, because the assumption that the accelerations
of joints in the future may not be valid. However, this error is compensated for in the

smoothing stage that follows.

The smoothing stage also fits within a predictor-corrector architecture which begins
at the base with the terminal condition Eq. (9.11). This is shown also in Fig. 5. The inputs
to the smoothing stage are a set of residuals. The Kalman gains are also assumed to be
known. The outputs are a set of joint-angle accelerations. Prediction occurs in crossing a
body by means of the costate propagatfon equation Eq. (9.12). This equation propagates
the costate outwards from joint k + 1 to joint k. The joint-angle accelerations f(k) are given
in terms of the predicted costate by Eq. (9.13). Correction occurs in crossing a joint in
an outward direction by means of the costate update equation Eq. (9.14). The joint-angle
accelerations §(k) computed in Eq. (9.13) are the final solution to the forward dynamics
problem. The acceleration at any given joint is that due to past, present, and future joint
moments. This is in contrast to the joint accelerations (residuals) computed in the filtering
stage, in which only past and present joint moments are used in computing the residual

acceleration at a given joint.

Observe in Fig. 5 that the filtering and smoothing stages can be viewed as mirror
images of each other about a vertical line that cuts the diagram in two. This is a graphical
illustration of the result in Eq. (8.2) that the filtering and smoothing algorithms factor the
inverse of the composite multibody robot system inertia matrix as M~! = (I-£L*)D~}(I-L)

This factorization is studied in more detail in [7, 8].



10 Covariance Analysis

The aim here is to develop formulas to compute the covariance of several relevant quantities
(state, state estimation error, innovations, etc.) discussed in previous sections. The random

field model Eq. (5.4) is assumed as a starting point.

Recall that the composite system inertia matrix M is the covariance of the measure-

ment process, 1. e.,
M=E(TT")= HSH*

This result has an interesting interpretation. It states that the collective system behavior, as
represented by the system inertia, emerges from the covariance of the output of the random
field model Eq. (5.4). It therefore provides a means to compute the inertia matrix numerically
by direct simulation of the stochastic model. From such a simulation, the inertia matrix
would emerge, without conducting the more traditional manual derivation of the equations
of motion. This could be done by generating repeated realizations of the random process W
by repeated call to a white-Gaussian random number generator with zero mean value and
covariance M. Use of this random process as an input to the linear system characterized by
H ¢ would produce the random process T as an output. The mean and covariance of T could
then be computed numerically in a statistical sense by repeating the experimental trials a
sufficiently large number of times. The statistically determined covariance of T would be

the rnuitibody system inertia M.

Lemma T7: The innovations is a white-noise process with a covariance given by

E(ee’) =D

Proof: QObserve that

E(ee”) = (I = £)E(yy")(I — £7) = (I — L)HSH (I - £7)
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Then use HSH* = (I + K)D(I +K*)and (I +K)(I - L) = 1.

Lemma 8:  The covariance E(e,é;) of the state estimation error e, = X — z is given by

E(e.e}) = yMyp™ = P + P + Py~

in terms of the articulated inertia P resulting from the Riccati equation.
Proof: Observe that e, = ¥ W to obtain that

E(e.e]) = pMy”
However,

M=P-¢&,PE,
Pre and post multiplying by ¥ and %" respectively leads to

yMyp™ = %P + P + P
Lemma 9:  The covariance of the costates is
Elaa*) =Q =T+ Ty +¢"Y, where Q=*"H*D'Hy

and in which T = diag[T(1),...,T(N)]. The diagonal blocks Y (k) satisfy

T(N+1)=0
for k = N--.1
T(k) = ™(k+ 1LE)T(k+ 1)k + 1,k) + H*(k)D(k)H(k)
end loop

Furthermore the matrices P and T satisfy the identity

HPT=H
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Proof: Since a =*H*D 'e and E(ee*) = D, then
E(aa®) = ¢"H*D~' He = Q
Moreover, from Eq. (10.2),
H'DT'H =T -&T¢, (10.3)"
Hence, pre and post multiplying by %= and %,
Q=T+TP+4"T

Since HPT* = 0, premultiplying Eq. (10.3) by HP it follows that HPY = H. |

The costate covariance matrix T has a very interesting physical interpretation [8].
It is the inverse of what is referred to as the operational task space inertia, the composite
inertia of the manipulator as seen from its tip. Because of this it plays a significant role
[6, 30] in the computations necessary to solve closed-chain problems in which two or more

manipulators are moving a commonly grasped object.

Lemma 10: The smoothed state estimation error e; = X — f and the filtered state

estimation error e, = X — z are related by
ef = (I~ Py"H*D ' H)e,
Their corresponding covariances are related by

P = E(ese}) = (I - PY"H D™ H)E(e,e3)(I — Py"H*D ' H)" (10.4)

Proof: Observe that: ef = ¢, — Pa; a = ¢p"H*D~'¢; and € = He,. |
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Lemma 11: The smoothed error covariance P can be expressed in terms of the filtered

error covariance matrix P emerging from the discrete-step Riccati equation as
P =(P=PYP)+ (I~ PY)}P + PH(I - TP) (10.5)

Furthermore,

HP=0; PH* =0 (10.6)

Proof: Use He,H = D and He, = HP in Eq. (10.4) to obtain that
P = E(e,e;) — PY"H"D ' HyP

Eq. (10.6) follows from the identity HPY = H. 1

Eq. (10.6) states that the joint-axes projection HP of the smoothed estimation-error
covariance P vanishes. As in Eq. (7.5) this reflects the lack of measurement noise in the
measurement Eq. (5.2). This implies that the projection Hf of the estimated state f along
the joint axes coincides, in the sense that there is no estimation error covariance, with the
projection of the state HX of the state X of the random field model in Eq. (5.1). The filter
and smoother therefore provide a set of force and acceleration estimates which correspond
exactly to the deterministic joint-angle force and acceleration estimates. There is no residual
uncertainty remaining in the joint angle estimates at the end of the filtering and smoothing
computations. Uncertainty is however present in the filtered state estimates. This is however
natural because of the sequential approach used to process the applied joint moments. The
inward filtering process has a built-in uncertainty because the filtered state estimate at any
given joint is not based on the “future” joint moments located in that part of the manipulator
closer to the base. The mass properties of the future links are also not accounted for in the
corresponding Riccati equation. The effect of future applied moments and links is however

completely taken into account by the outward smoothing operation [1].
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The covariances of many of the relevant quantities in the random-field estimation

problem of this paper are given by the following identities:

E[WW~|

E[XX

E[TT"|

Elzz"]

E[(X — 2)(X - 2)']
Elee”]

E[vv]

Elaa’]

AT

E[ff7]
E[(X - fUX - £Y]
E{(f - 2)(f - 2)7]

E[WW"

M

§=¢M§ =R+¢R+RE"

M = HRH" + H}RH" 4+ HR$"

$KDK"$" = (R~ P)+ (R — P) + (R — P)¢"

My = P+ P + Py

o

-t

Q=T+Td+¢"

e

D™ 4+ K*TK + K*$"(E;YK — H'D™Y) + (K*TE, = D' H)wG
$Me™ — My + PQP

P=9¢My" -~ PQP = (P — PYP)+ (I - PY)$P + Py*(I - TP)
PQP = P(T+ Y4 +4*T)P

Q=M—MOM =(M— MYIM) - M(T§ + " T)M

"These provide a good summary of the results of this section.

11 Closed-Form Inertia Matrix Inverse

The foregoing results can be used to obtain in closed form a decomposition of the inverse

of the composite multibody robot system inertia. This is done in terms of the covariance

matrices P and T of the previous section.
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Lemma 12:  The inverse of the system inertia matrix can be expressed as

M = D4 K*TK + K*p*(E3TK = H"D™Y) 4 (K*TEy — D H)pK

= D' K™TK + K*$*(TK = H"D™) + (K™Y — D' H)pK
Alternatively, it can be expressed as M~! = D' HUH*D! where

U=P+PY*P+PEY (TP —I) + (PTY7 — I)p&,P, where T+ 2 £7T¢,

Proof: This follows from M™ = (I-L*)D"}(I— L), £ = H¢X and use of Eq. (9.2). N

This result is quite similar to that obtained in {1] by more detailed methods. The
result has an interesting potential application in robot dynamics analysis and in control
design because it leads to equations of motion of the form § = M~Y8)T. This is potentially
a very useful result, since this system of equations is much easier to work with, in simulation
and control design, for instance, than the equivalent system M# = T. It also leads to easy
means to obtain linearized manipulators models using spatial recursions [28]. The above
operator equation immediately leads to the following recursive algorithms for evaluation of

the inverse M~! to the multibody system inertia matrix.

Lemma 13: The general element M~1(k,:) of the inverse to the multibody system
inertia matrix M can be evaluated in the triangular region 1 < k < 7 < N via successive
vertical sweeps of dimishing length. A vertical sweep is defined as a sequence generated by
varying & from the diagonal in which k = 7 to the bottom edge of the triangular region in

which & = 1. The index 7 is held constant at a fixed value for each vertical sweep. Successive
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vertical sweeps are generated by varying ¢ repeatedly from : = N to i = 1.

[ T(N+1)=0
fori = N-...1
TE) = G+ 1L,)T(E+ )o@+ 1,6) + HE) D1 (G H()
M7Y,0) = D7) + K6+ L) T(E + DK@ + 1,4)

( M) = K (i + Li)T(E + 1)@ + 1,7) — HE ML, 1)
fork = i1-1.--1 '
§ M Vkid) = Ak+DK(k+1,k)

ME) = ME+1)0w(k+1,k)
| end loop

| end loop

12 Concluding Remarks

One of the objectives of the paper is to point out the equivalence of recursive dynamics
methods and the filtering and smoothing techniques from state estimation theory. In the
view of the author, establishing relationships between ideas and concepts that had been
previously thought to be unrelated is one of the more interesting efforts that can be made.
This typically leads to the discovery of new physical and mathematical insights that would

otherwise be difficult to discover.

A closely related objective has been to show that multibody robot dynamics com-
putations can be organized with the very well understood and highly developed framework
of filtering and smoothing. Extensive analytical and computational experience exists with
such an architecture. There is the reassuring presence of such familiar concepts as Riccati
equations, Kalman gains, innovations, etc. The architecture is very easy to understand both
mathematically and physically. This is one of the primary reasons for its popularity. In ad-
dition, the number of arithmetic operations required to solve the forward dynamics problem
by means of the filter and smoother is linear in the number of bodies. Adding a body is as
simple as adding a measurement to the Kalman filter. This linear performance compares
favorably with more common approaches that first assemble the composite multibody robot

system inertia maftrix and then invert this matrix. Even though numerical efficiency is not
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the central aim of this research, it does turn out that the filtering and smoothing tech-
niques are very efficient for large N. This feature alone provides the motivation for further

investigation of the methods.

There must _be a fundamental reason for the relationship between random field es-
timation and robéi?dynamics. This relationship is not accidental. While this reason has
been discussed to some extent in [1], more investigation is required and is under way. This
relationship seems to suggest that statistical models may be more appropriate than classical
mechanics models to investigate robot behavior. The statistical models, for examp.le, can
easily handle configuration constraints and unpredictable transitions between constrained
and unconstrained motion [29]. Collisions and time-varying contact between manipulators
and objects in the environment are more easily handled also. A more complete investigation
of the application of statistical models to the problems of motion planning and control is

currently under way.
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Fig. 3. State space model for typical body



ESTIMATION DYNAMICS

States X(k) Spatial Forces
Costates - k) Spatial Accelerations
Measurements T(k) Active Moments
Transition Matrix o(k,k-1) Intrabody Jacobian
Process Error Covariance M(k) Spatial Inertia
Known Deterministic Input b(k) Bias Spatial Force
State-to-Output Map H{k) Projection From State
To Joint Axis

Figure 4. Map between boundary-value problems in estimation and in dynamics
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Fig. 5. Filtering and smoothing architecture




