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Spatial Operator Factorization and
Inversion of the Manipulator Mass Matrix

Guillermo Rodriguez, Member, IEEE, and Kenneth Kreutz-Delgado

Abstract— Two new recursive factorizations are developed of
the mass matrix for fixed-base and mobile-base manipulators.
First, the mass matrix M is shown to have the factorization
M = HoM¢* H*. This is referred to here as the Newton-Euler
factorization because it is closely related to the recursive New-
ton—Euler equations of motion. This factorization may be the
simplest way to show the equivalence of recursive Newton—-Euler
and Lagrangian manipulator dynamics. Second, the mass matrix
is shown to have a related innovations factorization M =
(T+ H®G)D(Z + H®G)". This leads to an immediate inversion
M = (T — HY¥G)* D! (T — HYG), where H and &
are given by known link geometric parameters, and G, ¥ and
D are obtained by a discrete-step Riccati equation driven by
the link masses. The factors (Z + H®G) and (Z — H¥@G) are
lower triangular matrices that are inverses of each other, and
D is a diagonal matrix., Efficient order N inverse and forward

dynamics algorithms are embedded in the two factorizations..

Moreover, the factorizations provide a high-level architectural
understanding of the mass matrix and its inverse, which is not
available readily from the detailed algorithms. The two factor-
izations are model-based in the sense that the manipulator model
itself determines the sequence of computations. This makes the
two factorizations quite distinct from more traditional Cholesky-
like numerical factorizations of positive definite matrices. Because
the manipulator model is used, every computational step has a
corresponding physical interpretation. This adds a substantial
amount of robustness, and numerical errors can be detected
by physical intuition. Development of the factorizations is made
simple by the use of spatial operators, such as ¢, & and ¥, which
govern the propagation of forces, velocities, and accelerations
from link to link along the span of the manipulator.

NOMENCLATURE

h(k) Unit vector along joint axis k.

0(k) Angle of link k with respect to link k+ 1 about
joint axis k.

O(k) Fixed point on joint axis k, which can be
viewed as the origin of a frame fixed in link
k.

[(k,k —1) Vector from O(k) to O(k — 1).

F(k) Constraint force on link & at point O(k) of joint
k.

N(k) Constraint moment on link £ at joint k.
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Fe(k) Net force on link % at link ¥ mass center.
CM(k)  Mass center of link k.

p(k) Vector from O(k) to CM(k).

v(k) Velocity of link k at point O(k) of joint k.
w(k) Angular velocity of link k.

ve(k) Velocity of link k at link k mass center.
m(k) Mass of link k.

I¢(k) Inertia tensor of link k at point CM (k).
I(k) Inertia tensor of link & at point O(k).
T(k) Actuated torque at joint k.

1. INTRODUCTION

FUNDAMENTAL analogy between multibody robot dy-

namics and linear filtering and smoothing has been
established in [1] and [2]. This analogy allows analysis of
manipulator dynamics using the very well understood and
highly popular recursive equations of Kalman filtering [3].
The present paper takes this analogy further by extending
to mechanical systems a powerful series of results [4]-[10],
which emerged after Kalman’s fundamental paper [3], and
which have carried filtering and smoothing theory to a very
mature state of development. These results include: 1) state
variable techniques [4], involving filtering and smoothing,
to solve Fredholm equations analogous to the equations of
robot dynamics; 2) Riccati equations, Fredholm resolvents, and
Wiener-Hopf equations [5], [6] to solve estimation problems
recursively; 3) the innovations approach [7], [8] to least
squares estimation, which factors covariances recursively [9].
A summary of this body of work is provided in [10].

In particular, this paper establishes mass matrix factoriza-
tions similar to the covariance factorizations summarized in
[10]. The innovations approach [6]-[8] plays a central role
in the factorization of covariances and in the development of
corresponding filtering and smoothing algorithms. Similarly,
the approach for mechanical systems advanced here leads
to an “innovations” factorization of the mass matrix and to
corresponding recursive forward dynamics algorithms.

A. Factorizations Provide High-Level Architectural
Understanding of the Mass Matrix and Its Inverse

The factorizations provide a high-level architectural under-
standing of the mass matrix not readily apparent from detailed
algorithms. This understanding is useful in developing arm-
independent hierarchical computer programs for simulation
and control design. It is also useful for concisely summarizing
the manipulator models required for advanced forms of ma-
nipulator motion planning and control. The two factorizations
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are model based in the sense that the manipulator model
itself is used to conduct the computations required. Every
computational step has a simple physical interpretation. This
leads to great physical understanding and insight that can be
used to detect and correct numerical errors that might arise.

The spatial operator approach to manipulator modeling
[11)-[14] is used to establish the mass matrix factorizations.
The operators govern the propagation of forces, velocities,
and accelerations through space from one rigid body to the
next. A physical interpretation of the operators is easy to
obtain. This allows the complex equations of robot dynamics
to be understood intuitively. The spatial operators obey simple
algebraic properties that allow them to be manipulated in a
spatial operator algebra [12].

B. Factorizations Embed Efficient Inverse
and Forward Dynamics Algorithms

Embedded in the two mass matrix factorizations are inverse
and forward dynamics algorithms recognized for their nu-
merical efficiency. The recursive Newton—Euler factorization
M = HpM¢* H* shows that the mass matrix M represents a
base-to-tip recursion followed by a tip-to-base recursion. This
result may be the simplest proof yet derived of the equivalence
[15] of Lagrangian and Newton—Euler manipulator dynamics.
It also embeds the efficient inverse dynamics algorithms of
[16]-{18]. An alternative factorization M = (Z+HYG)D(T+
HUYG)*, referred to here as the innovations factorization, leads
to an immediate recursive inversion of the mass matrix. It
also leads to equivalent O(N) recursive forward dynamics
algorithms [1], [19], [20] in which the number of arithmetical
operations grows only linearly with the number of degrees of
freedom.

C. Current Applications of the Factorization Results

The mass matrix factorization results outlined here have
been used to develop hierarchical computer programs for
manipulator dynamics [21]. Programs are relatively easy to

LINK N

BASE (LINKN +1)

Onty

Link serial manipulator.

write because of the high level of abstraction made possible
by spatial operators. The programs can take any allowable
operator expression and implement a computationally efficient
recursive algorithm. It is even possible to automate the devel-
opment of such algorithms with relatively simple computer
programs. The factorization results are also being used to
manage the complexity in several problems of current interest
in robotics research: recursive implementation of operational
space control [22], [23]; flexible multibody systems [24], [25];
indirect-drive geared robotic manipulators [26]; recursive lin-
earization [27]; manipulator control design [28]; and statistical
mechanics models for motion planning [29].

II. STATE SPACE MODEL FOR MULTILINK DYNAMICS

Consider a rigid N-link serial manipulator as illustrated in
Figs. 1 and 2, with the symbols defined in the nomenclature
list. The links and joints are numbered in an increasing order
that goes from the tip of the system toward the base. Joint N is
the last in the sequence, and it connects link NV to a base. The
base is referred to as link N + 1. The external environment is
viewed as “link 0,” and the arm can contact the environment
at any arbitrary point denoted by the index k& = 0. Joint k in
the sequence connects links & and k 4 1. For now, the base is
assumed to be immobile, a restriction that is relaxed in Section
VIIL Note that link and joint numbers increase toward the base
of the system. This differs from the more common numbering
approach in which the numbers increase toward the tip. This
numbering scheme makes it easy to describe the mass matrix
factorization techniques discussed in this paper.

The ordering scheme allows thinking of sequentially moving
from joint 1 to joint N as going “inward” and moving from
joint N to joint 1 as going “outward.” An algorithm that
processes link data by iterating in the inward direction from
k =1to k = N is then called tip-to-base. In contrast, an
algorithm that iterates outward from £k = N to k = 1 is
called base-to-tip. A complete tip-to-base iteration is called
an inward sweep. A complete base-to-tip iteration is called
an outward sweep. Although 6(k) is defined to be rotational,
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LINK k+1
Fig. 2. Relationship of defined quantities to link k.

the extension to sliding joints is simple [11]. Note that axis
h(k) is associated with angle #(k) and both are associated
with link k. This scheme can be considered to be a modified
Denavit—Hartenberg formulation with reversed link numbering
f11].

A. Spatial Velocity, Acceleration, Force, and Inertia

Robot dynamics equations are expressed very concisely in
terms of quantities referred to [1] as spatial velocity V(k),
spatial acceleration a(k), spatial force f(k), and spatial inertia

M(k):
_ [ wk)
vir=(3)
o
= ( 55)
_( N
o= ) ®
I(k) m(k)z?’(k)-)
M(k) = - . 2
©=( iy "mis @
The spatial forces f(k) belong to a state space very similar
to those encountered in filtering and smoothing [1]. The
spatial accelerations are the corresponding costates. The spatial
quantities defined by (1) and (2) are closely related to those
of [19], but they are not identical. The difference is quite
significant because it implies that only the rules of ordinary
matrix algebra are used here without use of the nonstandard
algebra of [19]. Furthermore, the formulation presented here
also allows use of the very well established operations [1],
[3] of state space estimation and control. One of the central

ingredients in the state space approach is the state transition
matrix as defined below.

B. State Transition Matrix

Define £(3,5) to be the vector from point O; to point O;.
These two points are illustrated in Fig. 1. Define also

86, ) = ( ! Z(fij)) 3)

The state-space tramsition matrix ¢(z,j) relates the spatial
force at point j to the spatial force at point 4. Similarly, the
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adjoint matrix ¢*(4, ) relates the spatial velocity at point ¢
to the spatial velocity at point j. It is known [1] that ¢(z, j)
obeys the state-space transition matrix properties

#ii) =T
¢71(i,7) = 63, 9)

¢(7”k) =¢(i’i— 1);'-.,¢(k+1>k)' ®)

III. RECURSIVE NEWTON-EULER EQUATIONS
In terms of the spatial quantities in Section II, the recursive
Newton-Euler equations [16] for manipulator dynamics are
[1], [11], assuming for now an immobile base,

V(N+1)=0
a(N+1)=0 (6)

for k = N---1 loop

V(k) = ¢*(k+ 1,k)V(k+ 1) + H*(k)8(k) @)
a(k) = ¢*(k + 1, k)a(k + 1) + H*(k)d(k) + a(k) (8)

end loop

V(0) = ¢*(1,0)V (1)
a(0) = ¢*(1,0)(1) + a(0) )
f(O) = fext (10)

for k = 1---N loop

F(k) = ¢(k,k = 1)f(k — 1) + M(k)e(k) + b(k) (11)
T(k) = H(k)f (k) 12

end loop

Observe in (7) that ¢*(k + 1, k) is the link & + 1 transition
matrix that relates rates at joint k£ + 1 to rates at joint k [1].
The joint-axis projection operator H*(k) in (7), (8), and (12)

is defined as
H*(k) = ( h(ok)>. (13)

Note that V(0) and «(0) are the manipulator tip spatial
velocity and acceleration, and f(0) is the tip spatial force
acting on the external environment. Note also that a(k) =
a[V(k + 1),V (k)] and b(k) = b[V(k)]. Hence, at the kth
iteration, the bias acceleration a(k), and the bias spatial
force b(k) can be computed from available quantities by the
explicit formulas given in [11]. If a joint k is a sliding joint
rather than rotational, the recursive spatial dynamics equations
can be easily modified [11] by redefining H*(k) and a(k)
appropriately.

Because the above equations are expressed in terms of
coordinate-free vectors, the notation “*” is used to denote
transpose. The adjoint z* for a three-vector x is defined by
the dot product z*y = z - y. Equations (6)-(12) are referred
to as recursive. More properly, they could be described as
iterative. However, this usage is consistent with that in the
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robotics literature [16], where the term recursive has been
made synonymous with iterative.

Assume henceforth that [#(k), (k)] are known. Given this
knowledge, the inverse dynamics problem is to compute the
moments T'(k) from the known inputs §(k). The forward
dynamics problem is to obtain #(k) from known inputs T(k)
and the recursive spatial dynamics equations (6)-(12).

[V. SPATIAL VECTORS AND SPATIAL OPERATORS
Manipulator equations can be expressed very concisely in

terms of the following spatial vectors and spatial operators
[12].

A. Spatial Vectors

As an example of a spatial vector, consider

V =col [V(1),---, V(N)] (14)

which collects the sequence of spatial velocities V' (k) defined
at the joints of the system into a 6V x 1 composite vector V.
The vector V' is a quantity associated with the entire system
of bodies, in the sense that all of the bodies are represented
in this vector. Each of its elements V' (k) corresponds to one
of the bodies k. Similarly

6 = col[6(1),...,8(N)]
T = col[T(1),...,T(N)]
a = colfa(l),...,a(N))] 15)
a = col[a(l),...,a(N)]
¢ f=col[f(1),..., f(N)]
b= col [b(1),...,b(N)] (16)

in which @ is the vector of joint angles, T is the vector of joint
moments, a is the vector of bias accelerations, « is the vector
of spatial accelerations, f is the vector of spatial forces, and
b is the vector of bias forces.

The main motivation for introducing the composite notation
above is to eliminate the argument k associated with the
various links. The symbol V denotes a vector relevant to the
entire manipulator system, and the need to refer subsequently
to the individual elements V'(k) is reduced significantly.

B. Spatial Operators to Propagate Force,
Velocity, and Acceleration

The spatial operator ¢ is defined as

I 0 - 0
b= ¢(2:,1) I . a7
BN,1) IN,2) - T

This is perhaps the most fundamental spatial operator de-
fined in this paper because many of the operators defined
subsequently are dependent on it. It is defined in terms of
the transition matrix ¢(z,7) that governs the propagation of
force from joint j to joint :. It is a composite operator in the
sense that all of the possible pairs of joints are represented.
The operator ¢ can be thought of as a transformation that in

a global sense governs the propagation of force within the
overall composite multilink system. Similarly, its adjoint ¢*
governs the propagation of velocity and acceleration within
the same system.

The spatial operators H and B* are defined as

H = diag[H(1),...,H(N)]
=[¢*(1,0),0,...,0]. (18)
Equation (18) defines a block-diagonal partitioned matrix H
whose block-diagonal elements are H (k). This matrix collects

the projections H (k) associated with the set k = 1,---, N of
joint axes.

C. The Jacobian Operator
A widely known relationship between joint rates § and tip
velocity V'(0) is

V(o) = 19)

in which J is the Jacobian operator. However, it is not widely
known that the Jacobian operator J has the factorization

J = B*¢*H* (20)

in terms of the spatial operators B*, ¢*, and H*. This
factorization can be established easily using the kinematic
relationships in Section IIL. In fact, (6)«8), (17), and (18)
together imply

N
=3 ¢, k)H* (1)6(3)

i=k
V = ¢*H*f
V(0) = B*¢*H*4. 1)

The operator factorization J = B*¢*H* of the Jacobian
J has an immediate physical interpretation in terms of the
action of J on the joint rates §: 1) H* acts on § in a
noniterative way resulting in the relative spatial velocities
between the links along the joint axes; 2) the action of ¢* on
H*8, in a base-to- -tip iterative manner given by (7), propagates
the relative link velocities to form the link spatial velocities
V = col[V(1),---,V(N)]; and 3) the operator B* projects
out V(1) from V in a noniterative way and propagates it to
the tip forming V'(0).

The important theme that emerges here is that operator
factorizations have obvious physical interpretations and equiv-
alent recursive algorithms.

V. RECURSIVE NEWTON-EULER
MASS MATRIX FACTORIZATION
The mass matrix factorization

M = HpM$*H* (22)

emerges easily by expressing in terms of spatial operators
the composite manipulator equations of motion. Here, M
= diag[M(1),---,M(N)] is a block-diagonal matrix that
collects along its diagonal the spatial inertias M (k) of all of
the links.
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A. Equations of Motion Based on Spatial Operators

The equations of motion for the composite multilink system
are

T = M +C + J*§(0) (23)

where C = Hp(M¢p*a+b) and J* = H@B. This result can be
established easily by means of the following sequence of steps.

From (6), (8), (17), and (18), o = ¢*H*§ + ¢*a. The accel-
erations o are seen to be the result of the joint accelerations
H*6 and the bias accelerations a propagated from the base to
the tip of the manipulator under the influence of the operator
¢* of interlink Jacobians. From (6), (7), (9), (17), and (18),

a(0) = B*¢*H*6 + B*¢*a + a(0). Since a(0) = J§ + Jb,
then J§ = B*¢*a + a(0).
From (10)-(12)
[ =¢[Ma+b+ Bf(0))
T =Hf. (24)

The spatial force vector f is seen to result from the tip-to-base
propagation of the D’Alembert forces M, the bias forces b,
and the tip forces f(0). This inward propagation is implied
by the action of the lower block triangular operator ¢ on the
quantity [Ma + b+ Bf(0)]. T is seen to be the noniterative
projection of f onto the joint axis.

Equation (24) can also be written as

T = Hp[Ma + b+ Bf(0)]
o= ¢*H*G + ¢*a (25)

which states that T is obtained by an outward operation on
and a, followed by an inward operation on «, b, and f(0). This
is precisely the recursive Newton—Euler algorithm of [16].

Combination of the two equations in (25) leads to the sought
after operator formulation of the manipulator dynamics in (23).
That (23) is equivalent to (25) reflects the equivalence [15]
between Lagrangian and recursive Newton—Euler dynamics.
For this reason, (22) is referred to here as the recursive
Newton—-Euler factorization of M.

B. Bias-Free Equations of Motion

Equation (23) can be written as
MI=T (26)
in which T’ = T — T, with the “bias torques” T given by
T =H¢[M¢*a+b+Bf(0)] =C+J'f(0).  (27)

Computing T recursively via the algorithm implicit in 27
allows working with the simpler system (26). Obtaining T
from (27) is equivalent to using the recursive Newton~Euler
algorithm implicit in (25) but with § = 0. This approach to
simplifying from (23) to (26) is the standard one and is used
in [16] and [19]. A choice exists, then, to solve the forward
dynamics problem by either solving (23) directly for § or by
solving the simpler system (26) for which the bias torques have
been removed. The second choice is considered in Section VI,
where the focus is on operator factorization and inversion of
the mass operator. The algorithmic alternative represented by
(23) is developed and presented in Section VIL
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C. Recursive Mass Matrix Evaluation

The recursive Newton—Euler factorization M = H$M ¢* H*
implies, and is implied by, the recursive Newton—FEuler
algorithm for inverse dynamics. Hence, the factorization
contains within it one of the most useful algorithms [16] for
inverse dynamics. Another efficient algorithm embedded in the
factorization is that referred to in [18] as the composite rigid
body method for recursive computation of the mass matrix
itself. This algorithm can be developed using the following
spatial operator identity.

Identity 1: The matrix ¢M¢* can be expressed as

OM¢* =1+ Or + rd* (28)

where the matrix @ is obtained from ¢ by subtracting the
6N X 6N identity. ® is equal to the operator ¢ used in [11].
The 6N x 6N block-diagonal matrix r = diag[r(1),...,r(N)]
has blocks r(k) given by

k
= (k) M(i)¢" (k, ). (29)

i=1
Proof: Observe that the (k, j)th block element of ¢M ¢*
is

min(k,j)

Z o(k, )M (3)$* (4,4).

Hence, the typical element kernel r(k, j) of pM¢* is r(k, j) =
¢(k, 5)r(j) for j < k, in which r(k) satisfies (29).

The algorithmic equivalent of (28) is the following inward
recursion for the diagonal elements m(k, k) and off-diagonal
elements m(3, k) of the composite multibody mass matrix M:

r(0)=0 B0
for k = 1---N loop

r(k) = ¢k, k — Vr(k — 1)¢*(k, k — 1) + M(k) (31)

m(k, k) = H(k)r(k)H* (k)
z(k) = r(k)H" (k) (32
fori=k+1.--N loop
(i) = ¢(i,i — 1)z(i - 1)
m(s, k) = H(i)z(3) (33)

end ¢ loop end & loop

This recursive technique is equivalent [1] to the composite
rigid-body method analyzed in [18] for its computational
efficiency. To establish this equivalence, it is necessary [1] to
parametrize the matrix r(k) associated with joint & in terms of
a minimal set of ten parameters for the composite rigid-body
outboard of joint &: one for the mass, three for the mass center
location, and six for the rotational inertia. This is yet another
indication of the ease with which computationally efficient
algorithms emerge from the spatial operator equations.
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VI. INNOVATIONS FACTORIZATION

The mass matrix M = H¢M¢*H* cannot be inverted by
inverting the individual factors H¢ and ¢* H* in the recursive
Newton—Euler factorization. The factors are not invertible
since they are not even square. An alternative factorization
M = (Z+ H®G)D(Z + H®G)* is now obtained in which
the individual factors are square and invertible. This alternative
is referred to here as the innovations factorization because
of its relationship to the innovations approach [7] of linear
least squares filtering and estimation. The discovery of this
alternative factorization is one of the central contributions of
this paper.

The key ingredients in the innovations factorization are: 1)
a discrete-step Riccati equation for the sequence of articu-
lated inertias [1] and 2) the corresponding spatially recursive
Kalman filtering equations of [1].

A. Discrete-Step Riccati Equation

The quantities P(k), D(k), and G(k) fork = 1,..., N, are
defined by the following inward iteration:
P(0) =0;

G(0) =0 (34)

for k =1.---N loop

P(k) = ¢(k,k — 1)P(k — 1)9*(k,k — 1) + M(k) (35)
D(k) = H(k)P(k)H" (k)
G(k) = P(k)H*(k)D~ (k) (36)
end loop

where 1(k,k — 1) is defined in (30) below.

This is a discrete Riccati equation driven by the link masses
M(k), which produce a sequence of spatial inertias P(k). It
can be shown that P(k) = P*(k) > 0 for all k. Hence, the
scalar D(k) is always nonzero, and D~1(k) = 1.0/D(k) is
guaranteed to exist. The matrix P(k) is the articulated body
inertia originally discussed in [19). D(k) is the projection of
the articulated body inertia, P(k), along joint axis k. Define
also the noniterative operators

P = diag[P(1),...,P(N)]
D = diag[D(1),...,D(N)]

G = diag[G(1),...,G(N)]. G7)

The sequence of Kalman gains G(k) and the corresponding
Kalman gain spatial operator G = PH* D~ are the central el-
ements in the spatially recursive Kalman filter-like algorithms

B. Kalman Filter Spatial Operator
The matrix (%, j) in (35) is defined for ¢ > j by

v(k,k) =T (38)
Y(kok—1) = ¢(k, k= DL - Gk - DH(k - 1) (39)
Wi, 4) = (6,5 - DY - 1,6 - 2)
P +1,5) P2 (40)

The matrix (%, 5) is a Jacobian-like operator associated
with articulated bodies that is analogous to the force propa-
gation Jacobian operator, ¢(z,;) for composite bodies (i.e.,
bodies whose joints are “frozen”). A complete discussion
of the physical interpretation and properties of these spatial
quantities can be found in [1].

The spatial Kalman filter transition operator is defined in
(41), which appears at the bottom of this page. The operator
VU is a lower block-triangular matrix. This operator will be
referred to as a Kalman filter transition operator because its
elements (4, j) govern the transitions of forces from one link
to the next in a spatially recursive Kalman filter-like algorithm.
The operator 1 when post-multiplied by (Z — GH) results in
the operator % of [11].

Identity 2: The matrices ¢M@* and P above are related by
¢pM¢* = P+ ®P + P®* + ®PH*D'HPO®*. (42)
Proof: Observe [T-G(k)H(k)|P(k)I—G(k)H(k)]* =

[Z — G(k)H(k)]P(k). Equation (35) then implies P(k +
1) = ¢(k+1, k)[P(k)~ P(k)H* (k) D~ (k) H (k) P(k)|¢* (k-+
1,k) + M(k + 1). Hence, r(k) = P(k) + q(k) with g(k) =
Sici $(k,)P)H*()D () HE)P(0)¢" (k,1). Also, r =
P + g, in which ¢ = diag[g(1),...,q(N)] with ¢(1) = 0.
However, 8 PH*D"'HP®* = q + ®&q + ¢®*, which can be
shown by an argument exactly like the proof of Identity 1.

* Identity 3: An alternative factorization of M = HoM¢* H*
is the innovations factorization

M= (IT+H®G)D(Z + HBG)* 43)
where T + H®G is lower block triangular and D is diagonal
and invertible.

Proof: Multiply (42) by H and H* and recall that D =
HPH* and G = PH*D™!,

The objective now is to invert the lower triangular factor
(T + H®G). To do this it is first convenient to establish the
following key identity.

Identity 4: The lower triangular operators ¥ and @ are
related by

filter described below. (ZT-9YGH)® =1, (44)
0 0
8(2,1) 0 0

vo| 62621 462 0 0 (1)
BIN2H(2,1) B(N,3)6(3,2) YN, Ap(43) - N,N-1) 0
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Proof: Observe the identity

k-1
¢(k,m) — p(k,m) = Zw(k,z' +1)¢(i + 1,m)
— p(k,9)¢(i,m)]
k—1
= Z Y(k,i+ 1)@ + 1,1)

-G(H(i)¢(é, m)

since P(k,m) = Y(k,m + 1)¢(m + 1,m)[Z — G(m)H(m)].
However, the (k, m)th block element of YGH® is
k—1
> Ylkyi+ 1)g(i +1,6) G H(i)d(i, m).
Thus, ® - ¥ = VGHY.
Identity 5: The lower triangular operators 7 + H®G and
Z — HYG are mutually reciprocal

(T+ H®G) ' =T- HYG. 45)

Proof: Observe that (Z — HYG)(Z + H®G) = T —
HYG + (Z - HYG)HIG = T.
Identities 3 and 5 imply the following factorization of the
inverse of the mass matrix.
Identity 6: The operator M~ can be factored as

M~ = (T - HYG)*'D™Y(T - HYQG). (46)

Since the matrix D in the innovations factorization is
diagonal, inversion of D is obtained easily by inverting the
N scalar diagonal elements D(k). Therefore, inversion of the
N x N mass matrix M is replaced by the simpler problem
of inverting a diagonal matrix D. Furthermore, the factors
(T — HYG) and (T — HUG)* in (46) can be mechanized
by the spatially recursive filtering and smoothing equations of
[1]. This leads to relatively easy recursive solutions to forward
dynamics problems.

VII. FORWARD DYNAMICS ALGORITHMS
BASED ON THE INNOVATIONS FACTORIZATION
Four closely related forward dynamics algorithms are now
obtained. The first algorithm is based on Identity 6 and on the
bias-free robot dynamics equations (26).

A. Four-Sweep Bias-Free Algorithm
Algorithm 1:
T'=T - H¢[M¢*a+ b+ Bf(0)]
§ =(Z-HYG)'DY(I - HYQ)T'.

(47)
(48)

Equation (48) is given by a tip-to-base sweep to produce the
vector v = D¢ with e = (I—- HYG)T’, followed by a base-
to-tip sweep to produce the joint accelerations 6. The vector e
is the innovations process, whereas v is the vector of weighted
residuals. The algorithm, essentially that developed in [1] and
[19], has been derived here by operator factorizations. Note
that the bias-free moments 7" in (47) can be computed by
means of an outward sweep followed by an inward sweep
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corresponding to the Newton~Euler algorithm for §. Algorithm
1 is therefore a “four-sweep” algorithm, which in state-space
(algorithmic) form becomes

1) Tip-to-base filtering of bias-free joint moments:

z2(0)=0
T'(0)=0
G(0)=0 (49)
for £k = 1---N loop
(k) = ¥(k, k — 1)z(k — 1)
+ ¢(k, k- 1)G(k — 1)T'(k — 1) (50)
e(k) = T'(k) — H(k)z(k)
v(k) = D™ (k)e(k) €2
end loop
2) Base-to-tip smoothing of weighted residuals:
AN+1)=0 (52)
for k = N---1 loop
A(k) =" (k+ 1, k)A(k + 1) + H*(k)v(k) (53)
(k) = v(k) — G*(k)¢*(k+ LKAk +1)  (54)

end loop

The quantities in the above recursions can be interpreted
physically. For instance: z(k) is the physical force felt by link
k at joint k due to the outboard joint moments, T'(k) being
nonzero; A(k) is the acceleration that link & has at joint k
when the bias terms are zero (i.e., when there is no gravity
loading and when velocities are zero so that there are no
coriolis/centrifugal forces acting on the link). That is, when
the bias terms are zero, A(k) = a(k). Additional physical
interpretation of the filtering and smoothing recursions can be
found in [1] and [19]. Note that the above forward dynamics
algorithm has an operations count that is O(IV). For notational
simplicity, the need to construct V,a,b, P,D, and G has not
been made explicit. It is understood that these quantities are
computed during appropriate sweeps of the algorithm [11].

A slight modification of Algorithm 1 leads to an alternative
algorithm that, in addition to providing joint accelerations, also
produces the link spatial accelerations « and the tip spatial
acceleration «(0).

B. Four-Sweep Algorithm to Compute
Link and Tip Accelerations

Algorithm 2:

T' =T - Hp[Me*a+b+ BF(0)] (55)
a=(T-GH'UH'v+Hv+¢a  (56)
a(0) = B*a + a(0). 57
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Proof: From (6), (8), (17), and (18), a = ¢*H*§ + ¢*a.
Since § = (Z—-HYG)*v, then o = ¢* H*(I- HYG)*v+¢*a.
However, the identities ¢ = ® + 7 and (Z ~ VGH)® = ¥
imply (56).

This means that a slight modification of the forward dy-
namics algorithm (49)—(54) allows the computation of the
manipulator spatial acceleration o and tip acceleration, a(0),
in addition to 6. This occurs by changing (52), (53), and (54) to

AN+1)=0; ((N+1)=0 (58)
for k. = N-.-1 loop
k) = ¢*(k+ 1, k)A(k + 1) + H*(k)v(k)
O(k) = v(k) — G*(k)¢*(k + 1, k)A(k + 1)
((k) = ¢"(k +1,k)¢(k + 1) + a(k)
a(k) = A(k) +{(k)
end loop
a(0) = ¢*(1,0)a(1) + a(0). (59)

Algorithms 1 and 2 are both “four-sweep algorithms,” two
sweeps being required to compute the biases, followed by two
sweeps to complete the computation of joint rates or spatial
accelerations. The next two are three-sweep algorithms.

C. Three-Sweep Algorithm Based on
Biased Equations of Motion

Algorithm 3.

¢ = M¢*a+b+ Bf(0) (60)
e=T - HVY[GT + (T - GH){] - (61)
§=(Z-HYG)*D! (62)

Proof: From (48) € = (I— HYG)(T — H¢¢). However,

the identities ¢ = ® + 7 and (Z — YGH)® = ¥ imply (61).

The filtering stage in this algorithm is obtained by modifying
(49)—(65) to

z(0) = £(0)

T0)=0

G(0)=0 (63)

for k = 1.--N loop
(k) =tp(k, k — D[2(k - 1) + ((k - 1)]
+ ¢(k,k - 1)G(k - 1)T(k - 1) (64)

e(k) =T(k) — H(k)z(k) — H(k) — {(k)
v(k) =D~ (k)e(k) (65)

end loop

Algorithm 3 requires outward-inward-outward sweeps to
obtain ¢ as indicated respectively by (60), (61), and (62). In
Algorithm 3, V' and a can be computed during the base-to-tip
sweep (60), and b, P, D, and G during the tip-to-base sweep
(61). In the same way that Algorithm 2 was derived from
Algorithm 1, Algorithm 3 could be modified to compute link
and tip spatial accelerations.

D. Three-Sweep Algorithm Not Requiring Prior
Computation of D’Alembert Forces

Note that (60) reflects a need to have a preliminary step to
compute the D’ Alembert forces Ma. The last algorithm given
in this section removes this requirement, although the need for
a preliminary base-to-tip sweep for the purpose of computing
V' remains.

V =B*¢*H*@ (66)
v=D"YI - HYG)T - D~ Hy
‘[(Z-GH)Pa+b+ Bf(0)]+ D 'HPa (67)

é =(T - HYG)*v — G*U*(T — GH)*a — G*a. (68)

This algorithm is established in [11] where it is also shown
that (67) and (68) can be implemented as

2(0) = f(0)
G0)=0
P0)=0
T0)=0 (69)
for k =1.--N loop
z(k) = (k,k — 1)[2(k = 1) + P(k — 1)a(k — 1)]
+ @k, k- 1)G(k — 1)T(k ~ 1) + b(k)  (70)

e(k) =T(k) — H(k)z(k); v(k)=D"'(k)e(k) (71)

end loop for k = N
A(k) =" (k+ 1, k)A(k + 1) + H*(k)v(k)

-+1 loop

+ [Z - G(k)H(k)]*a(k) (72)
B(k) =v(k) — G*(K)$ (k+ L, E)A(k + 1) — G* (K)a(k)
(73)

“end loop

The three-sweep algorithm (66)—(68) can also be found in
[1], where it is derived by what is referred to as the “sweep”
method to solve boundary-value problems. It is possible to
apply the tools of this paper to obtain a two-sweep forward
dynamics algorithm, avoiding the sweep contained in (60),
although at the expense of greater algorithmic complexity. An-
other two-sweep algorithm can also be obtained by computing
(66) and (68) in the same base-to-tip sweep. This, however,
requires that a slightly delayed value of the spatial velocity
V be tolerated.

VIII. EXTENSION TO A MOBILE BASE
A fictitious joint N + 1 is introduced which can be at any
prescribed location in the base link. Typically, this joint is at
the base link mass center, but it could be at any other point.
Associated with the joint is the joint-axes projection operator

H*(N +1) =T € R5%S. (74)

Note that this choice of H(N + 1) implies that the base is
fully mobile in all six degrees of freedom. There is no loss of
generality in this. By appropriate selection of H(N + 1), base
motion in fewer degrees of freedom can be analyzed [11].
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A. Augmented Spatial Acceleration Vector

The base moves with the spatial velocity V(N + 1) and the
spatial acceleration a(V + 1) given by

V(N + 1) = colfw, v]

V(N 4 1) = collw, 9] (75)

in which w and v are, respectively, the angular and linear
velocities with respect to an inertial reference, and & and ¥
are the corresponding accelerations. It is convenient to collect
all of the accelerations associated with the independent (joint
plus base) degrees of freedom in the system into the following
augmented acceleration vector:

W = col[f(1),---,6(N), V(N + 1)]. (76)

This vector contains the set of N joint-angle accelerations
followed by the last element V(N + 1) representing the base
acceleration. The problem of forward dynamics is to compute
the augmented acceleration W in (76), given the set of forces
that are applied to the system. This means that the base
acceleration V(N + 1) in (75) is an unknown quantity that
must be determined together with all of the joint accelerations
6.

B. Augmented Applied Force Vector

It is assumed that a prescribed force T'(N + 1) is applied at
the fictitious joint N + 1. Due to (12), this force is related to
the spatial force f(N + 1) at the same joint by

T(N+1)=H(N+1)f(N+1)= f(N+1) € R°. (77)

This force is put together with the remaining joint moments
T(1),---,T(N) in order to form the augmented applied force
vector

T = col[T(1),-- -, T(N), T(N +1)]. (78)

The forward dynamics problem can now be stated as that
of computing the augmented acceleration vector W, given the
augmented applied force vector 7.

C. Composite Manipulator Dynamics

The extension is now complete and W and T are related by

T = MW +C + J*£(0)

W =M™ T - ¢ - J*f(0)]. (79)

The operator forms and interpretations of M, C, and J*
still hold. In particular, these operators can be mechanized
recursively by the operator factorization and inversion given
in previous sections of this paper. The only change is in the
dimensions of the operators.

IX. HIERARCHICAL FACTORIZATION SOFTWARE
The mass matrix factorization results outlined here have a
built-in hierarchical architecture that leads to very simple re-
configurable computer programs [21]. The programs translate
user-defined blocks of high-level operators into more detailed
algorithms and programs. Fig. 3 illustrates schematically the
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Fig. 3. Spatial operators map to efficient recursive algorithms.

operation of a forward dynamics program based on the inno-
vations factorization.

At the highest level (Level 1 in Fig. 3) of abstraction,
the user inputs the factorization § = (I — HUG)*D~1(T —
HUG)T. This input requires that the program decompose
the operators H, ¥, and G that appear at this level. This
decomposition occurs at Level 2 in the hierarchy. At the next
level, labeled Level 3 in the figure, it is recognized that ¥
is what is referred to as the Kalman filter transition operator.
This in turn implies that ¥ can be mechanized using an inward
Kalman filtering recursion, shown at Level 4, from the tip
of the manipulator to the base. This recursion is built up as
a sequence of transitions in each of the links characterized
by the operator ¢(k,k — 1) appearing at Level 5. There are
two transitions per link at Level 6: 1) propagation of forces
within a link represented by the operator ¢(k,k — 1) and 2)
computing the effects of crossing a joint involving the operator
Z — G(k)H(k). This second transition calls the necessary
coordinate transformation to go from one link to the next.
This coordinate transformation occurs at Level 7, the lowest
level in the hierarchy.

This programming approach achieves a very high level of
abstraction. The number of symbols visible to the analyst at
any level in the hierarchy is very small. This means that
the corresponding computer programs are also very simple.
The programs are modular and map to a modular software
architecture. The programs are arm independent in the sense
that going from one arm to another arm is easy to do.

Although the programs are simple, computational efficiency
is not lost. Embedded in the programs are efficient algorithms
equivalent to those of [1], [16], [17], [19], [20]. Other compu-
tations, such as inverse kinematics and trajectory design, have
also been implemented [21]. An investigation of the number
of arithmetical operations for these algorithms is presented in
[30] for rigid multilink manipulators and in [25] for flexible
multibody systems. Additional efficiency can be gained by
taking advantage of the choice of coordinate frames and of
the specific structure of the manipulator.
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X. RELATIONSHIP TO OTHER WORK

The primary contribution of this paper is to show that
there are two alternative recursive factorizations of the ma-
nipulator mass matrix. These factorizations are referred to as
the recursive Newton—Euler factorization and the innovations
factorization. These two factorizations embedd in a high-level
analytical framework, that of spatial operators, very efficient
algorithms for inverse and forward kinematics. Furthermore,
the spatial operator approach reveals very simple abstract
structural properties of the manipulator mass matrix that
cannot be seen easily from the detailed algorithms. The
highly abstract spatial operator notation reduces the num-
ber of symbols needed to solve a given dynamics problem.
This leads to a higher level abstract methodology [11] for
complexity management in modeling, analysis, software de-
velopment, robot programming, simulation, and control of
complex robotic systems. This augments significantly the
analytical tools available [31] to analyze general multibody
system dynamics. i

A. Significance of the Recursive Newton—Euler Factorization

The recursive Newton—Euler factorization M = HpM¢* H*
embedds the following efficient inverse dynamics algorithms:
1) recursive Newton—Euler and 2) the composite rigid-body
method for recursive evaluation of the manipulator mass
matrix.

The Newton—Euler recursion for inverse dynamics is, of
course, a very well established [16] algorithm in robotics. This
paper sheds additional light on this algorithm by showing that
it is equivalent to the Newton—Euler mass matrix factorization
in the sense that both the algorithm and the factorization can be
derived easily from each other. This leads to what is believed
to be the simplest derivation found to date of the equivalence
of Lagrangian and recursive Newton—Euler dynamics. This
equivalence is embedded in the single spatial operator equation
M = HpM ¢* H*. Establishing this result by more detailed
methods [15] requires significantly more work.

Closely related to the recursive Newton—Euler algorithms
of [16] is the composite-body method for inverse dynamics
analyzed in [18] for its numerical efficiency. This method
consists of an inward iteration that begins at the tip of the
manipulator and ends at its base. For every joint, it computes
the mass, mass center location, and rotational inertia of the
composite body outboard of that joint. This method can
be recovered easily from the single spatial operator identity
¢M¢* = r + @r + r®* which has been stated as Identity
1 of Section V. This is another example of a very efficient
algorithm being embedded in the high-level spatial operator
equations.

The recursive Newton—Euler factorization of this paper is
closely related to a mass matrix factorization in [32]. When
the notation of this paper is used, the factorization in [32]
becomes M = PP*, where P is lower triangular. The re-
cursive Newton—Euler factorization presented here shows that
P of [32] has an operator factorization P = H¢M?'/2, This
factorization shows explicitly the force propagation embedded
in the operator P. This complements the results of [32],

where P is evaluated numerically and the related forward
dynamics problem is solved numerically using Householder
transformations.

B. Significance of the Innovations Factorization

The innovations factorization M = (Z + H®K)D(Z +
H®K)* and its corresponding inverse embedd the recursive
algorithms for forward dynamics of [1] and [19]. They also
embedd recursive algorithms for computation of the mass
matrix inverse as discussed in [1] and [13]. These algorithms
are order N in the sense that the number of arithmetic
computations grows only linearly with the number of degrees
of freedom. They also can be cast [1] within the highly
developed filtering and smoothing algorithm architecture of
state estimation theory. Algorithms are easy to implement in
computer programs because the filtering and smoothing archi-
tecture can be used as a global guide or road map in program
development. The numerical stability of the algorithms can
also be evaluated easily because computational characteristics
of filters and smoothers are very well understood [33].

One of the main contributions of the present paper is to
show that the filtering and smoothing algorithms for forward
dynamics are embedded in the innovations factorization. The
algorithms can be derived using the single operator equation
M~ = (IT-HYG)*D~}(T - HYG) expressing the innova-
tions factorization of the mass matrix inverse. Development of
the forward dynamics algorithms using more detailed methods
[1], [19], [20] requires significantly more work.

C. Relationship to Numerical Factorization Methods

There is a critical difference between the factorization
results of this paper and common [34] numerical factorization
techniques, such as LDU decomposition or Cholesky factor-
ization, of positive definite matrices. The key difference is
that the spatial operator approach used here leads to model-
based factorizations, in which the manipulator model itself
is used to conduct the factorizations and related inversions.
Both the recursive Newton—Euler factorization and the inno-
vations factorization are model based. This means that every
computational step has a corresponding physical interpretation.
Intermediate quantities, such as articulated inertias, Jacobian
operations, projections along joint axes, etc., that appear at
certain steps of the factorization and inversion process can
easily be checked for consistency with physical understanding
and intuition. Another way to state this is to say that the
spatial operator factorizations are completely symbolic, in the
sense that there is a symbolic expression for every step in
the computations. Further evidence of this is that selection of
coordinate frames is not needed to state the factorizations.

Numerical factorization techniques [34] can of course be
applied to factor and invert the manipulator mass matrix,
since this matrix is a special case of a general positive
definite symmetric matrix. This approach would begin by
first assembling the mass matrix numerically by obtaining
explicit numerical values for each of its elements. Any of a
number of methods, the recursive Newton—Euler factorization
of this paper for example, could be used to do this. Then
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standard numerical techniques [34] could be used to compute
the mass matrix inverse. This approach is strictly numerical.
The physical model of the manipulator is not used at all in
conducting the mass matrix inversion, although it may be used
to some extent in the initial evaluation of mass matrix itself,
Because the inversion process is not model based, not every
step has a corresponding physical interpretation. This means
that intermediate steps are not easy to interpret physically, and
there is possible loss of physical insight and understanding.

Standard methods for numerical inversion for positive defi-
nite matrices, of course, are quite useful in solving manipulator
dynamics problems. These techniques have a solid analyt-
ical foundation [34] in numerical analysis and are widely
used in many applications. The factorization results of this
paper do not aim to replace the numerical techniques as
general-purpose tools for matrix inversion. Rather, the aim
is to point out and take advantage of certain properties
of the manipulator mass matrix that make it distinct from
more general positive definite matrices. The major distinctive
characteristic is that the manipulator mass matrix emerges
from manipulator mechanics, whereas a more general positive
definite matrix typically does not. The manipulator mass
matrix is generated by a manipulator model. This allows use
of the model itself to determine the computations required
for mass matrix inversion. In this sense, the innovations
factorization then represents a new way, one not found in
standard numerical linear algebra references [34], to obtain
a model-based and numerical Cholesky-like factorization of
the mass matrix and its corresponding inverse.

XI. CONCLUDING REMARKS

This paper advances two linear operator factorizations of
the manipulator mass matrix. Embedded in the factorizations
are many of the techniques that are regarded as very efficient
computational solutions to inverse and forward dynamics
problems. The operator factorizations provide a high-level
architectural understanding of the mass matrix and its inverse,
which is not visible in the detailed algorithms. They also lead
to a new approach to the development of computer programs
to organize complexity in robot dynamics.
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