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has been a major hurdle on the use of these compensating
potentials more generally in constrained MD simulations.Rigid internal constraints are used in molecular models to speed

up molecular dynamics (MD) simulations. It is well recognized that This paper analyzes the structure of the compensating
statistical averages from such constrained MD simulations differ by potential and its gradient and develops substantially sim-
a metric tensor-dependent term from similar averages computed pler expressions for them for tree topology molecular mod-
using conventional unconstrained MD simulations. Fixman pro-

els. These expressions are used to derive computationalposed augmenting the standard potential with a compensating term
algorithms for use in constrained MD simulations. Thewhich depends on the metric tensor to nullify the effects of this
algorithms are straightforward extensions of the recentlybias term. However, in the absence of tractable algorithms to com-

pute this compensating tensor potential and its gradient its use has proposed spatial operators based O(N ) algorithm for con-
been impractical. This paper derives a new algorithm for computing strained MD simulations [2]. Indeed, the compensating
the compensating potential, as well as its gradient for tree topology potential and its gradient are readily computable from
molecular systems. The algorithm is quite straightforward and is

the articulated body inertia quantities available from thisan extension of the spatial operators based O(N ) algorithm that
O(N ) algorithm.has been recently proposed for constrained dynamics. Indeed, the

compensating potential is closely related and computed from the
2. ENSEMBLE AVERAGES IN CONSTRAINEDarticulated body inertia quantities available from this O(N )

DYNAMICS SIMULATIONSalgorithm. Q 1997 Academic Press

The partition function Z (T ) for an n degree of freedom
unconstrained Cartesian molecular model is given by the1. INTRODUCTION
expression

Rigid internal constraints are often used in molecular
models to eliminate high frequency modes and to enable Z (T ) 5

1
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? ? ? ? ? ? Ey
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? ? ? Ec1

2a1the use of large numerical integration time steps necessary
for speeding up molecular dynamics (MD) simulations [1,
2]. There has been considerable debate regarding the rela- exp F2S1

2
p* M 21 p 1 V D@kT G (2.1)

tionship between the statistical averages obtained from
such constrained MD simulations and those obtained from 3 dp1 ? ? ? dpn dq1 ? ? ? dqn
conventional unconstrained Cartesian model MD simula-

where T denotes the temperature, and qi and pi are thetions [3–7]. In particular, Fixman [3] pointed out that en-
configuration and momentum coordinates, V is the stan-semble averages obtained from MD simulation using the
dard potential energy, M [ Rn3n denotes the system massconstrained and unconstrained models will differ due to
matrix (or metric tensor). The system kinetic energy isthe presence of a metric tensor dependent term in the
given by Asp*M 21p, and the limits of integration ai and cipartition function for constrained molecular models. and
are determined by the geometry of the problem [12]. Forthis has been verified in simulations. Fixman proposed the
conventional unconstrained Cartesian dynamics, the massaugmentation of the standard potential by a compensating
matrix M is constant (and diagonal) and does not dependmetric tensor potential in constrained MD simulations to
upon the system configuration. As a consequence, the en-compensate for the effects of the bias term. Several re-
semble average of a function f(q) is given bysearchers [8–11] have verified the efficacy of this method

for simple molecular systems. The prohibitive complexity
of computing the metric tensor potential and its gradient k f(q)l 5

2fkT n/2
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f(q) exp[2V /kT ]
(2.2)
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where the momentum variables have been integrated over In contrast with the unconstrained Cartesian dynamics ex-
pression in Eq. (2.2), the integrand in the partition functionand eliminated.

In constrained dynamics models, the molecular system integral in Eq. (2.5) involves the determinant of the mass
matrix. This additional term introduces a bias in statisticalis modeled as a collection of rigid clusters coupled together

by articulable hinges [2]. For such constrained dynamics averages computed using constrained dynamics models
versus those obtained using Cartesian models [3].models, the mass matrix M (u) [ RN 3N is a function of

the internal configuration coordinates vector u and N the A method for bridging this gap in statistical estimates
was proposed by Fixman [3]. He suggested replacing thenumber of degrees of freedom for the constrained model.

The kinetic energy K.E. is now given by the expression potential function V (u) by the modified potential func-
tion V 9(u)

K.E. 5
1
2

b*M (u)b 5
1
2

p*M 21(u)p, (2.3)

V 9(u) 5
D

V (u) 1 V c(u), where V c(u) 5
D

As ln det hM (u)j
(2.9)where b denotes the internal velocity coordinates vector,

and where the conjugate momenta vector p is given by
the expression in constrained MD simulations. It is easy to see that replac-

ing V (u) in Eq. (2.7) and Eq. (2.8) by V 9(u) eliminates
p 5 M (u)b. (2.4) the metric tensor from the partition functions and the ex-

pression for the ensemble average. The extra potential
term V c(u) is referred to as the compensating mass matrixThe partition function Z (T ) for the system is given by
potential or the metric-tensor potential [7], since it effec-the expression
tively compensates for the mass matrix determinant term
in Eq. (2.8).

Z 9(T ) 5
1

hN Ey
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? ? ? Ey

2y
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With the use of V 9(u), the remaining differences be-
tween statistical averages computed using constrained and
unconstrained MD simulations are due to the coarser sam-

exp F2S1
2

p* M 21(u)p 1 V D@kT G (2.5) pling of the conformational space during the averaging
process in constrained MD simulations. The appropriate
use of constraints is important for ensuring that the loss3 dp91 ? ? ? dp9N du1 ? ? ? duN .
in fidelity is within acceptable limits for the simulation
experiment at hand. The use of the compensating mass

Using a diagonalizing transformation on the momentum matrix potential helps ensure that at least the systematic
coordinates of the form bias term from the metric tensor does not contribute to

the averaging errors.
p9 5 M 21/2(u)p (2.6) The implication of using V 9(u) is that now its gradient

must be used for computing the forces during constrained
MD simulations. The overall hinge torque vector T9 iswe can integrate Eq. (2.5) over the new momentum coordi-
defined as the gradient of V 9(u) and is given bynates to get the following expression for the partition

function

T9 5 =uV 9(u) 5 T 1 Tc , where
(2.10)

Z (T ) 5
2fkT N /2

hN Ec
N

2a
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det hM 1/2(u)j
(2.7) T 5

D
=uV (u), Tc 5

D
=uV c(u).

exp[2V /kT ] 3 du1 ? ? ? duN .

Tc represents the compensating hinge torque arising from
This implies that the ensemble average of a function f(u) the compensating mass-matrix potential V c(u) and must
over the configuration space defined by the internal coordi- be used in addition to the standard torque term T during
nates is given by constrained MD simulations. Its kth element, Tc(k), for

the kth hinge is given by

k f(u)l9 5
2fkT N /2

hN Ec
N

2a
N

? ? ? Ec1

2a1

det hM 1/2(u)j f(u)
(2.8)

Tc(k) 5
­V c(u)
­u(k)

5
1
2

­ ln det hM (u)j
­u(k)

. (2.11)
exp[2V /kT ] 3 du1 ? ? ? duN /Z 9.
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The need for the use of the compensating potential has ­g(X)
­y

5 Om
i51

On
j51

­g(X)
­X(i, j)

­X(i, j)
­(y)

(2.12)
been verified via computer simulations for several small
systems [7, 8, 10, 11, 13, 14]. There is general consensus
that the compensating potential is less important for rigid

5 Trace H ­g
­X

* ­X
­y J,

constraints on the bond stretching degrees of freedom
while they are a significant factor for rigid constraints in-
volving bond angles. It was found [7, 8] that the use of the

where ­g(X)/­X(i, j) and ­X(i, j)/­y are m 3 n matricescompensating potential in constrained MD simulations for
whose elements are defined asn-butane other systems effectively bridged the gap in the

number of dihedral transitions using constrained and un-
constrained MD simulations. Go and Scheraga [5, 6] exam-
ined the relative merits of Cartesian dynamics models and ­g

­X
(i, j) 5

D ­g(X)
­X(i, j)

,
­X
­y

(i, j) 5
D ­X(i, j)

­y
.

constrained dynamics models and concluded that the for-
mer was the more correct model for molecular dynamics
simulations. However, Refs. [8, 9] argued that the con-
strained MD simulations produce similar statistical esti- For the scalar function g(X) 5

D ln det hX j, it is a well
established fact [18] thatmates as the Cartesian case if the compensating potential

is included.
Despite the accepted importance of using the compen-

sating potential during constrained dynamics simulations, ­g(X)
­X

5
­ ln det hX j

­X
5 hX*j21. (2.13)

it is rarely used in practice. The primary factor has been the
lack of a tractable method for computing the compensating
torque, Tc, for all but simple molecular systems [13]. A

Using Eq. (2.13) and Eq. (2.12) in Eq. (2.11) leads to theclever method for computing V c was proposed by Fixman
following expression for Tc (k):[4]. However, this method is also limited to moderatively

sized molecular systems and does not include a procedure
for computing the compensating torque Tc .

In the following sections we take a closer look at the Tc(k) 5
1
2

Trace HM 21(u)
­M (u)
­u(k) J

(2.14)expression for Tc in Eq. (2.11) and derive simpler expres-
sions for it using techniques from the spatial operator alge-

5
1
2

Trace HM 21(u)Mu(k)(u)J.bra [2]. These expressions lead to a simple method for
computing this compensating torque for arbitrary tree-
topology molecular systems. This method is an extension
of the spatial operators based algorithm for constrained We have used the notational shorthand Mu(k)(u) in place
dynamics simulations [2]. This algorithm provides a highly of ­M (u)/­u(k) in Eq. (2.14). In the following sections
efficient O(N ) recursive method for solving the equations we use spatial operator expressions for M (u) to further
of motion for constrained systems without using iterative simplify Eq. (2.14).
procedures such as in the SHAKE algorithm [15]. The
equations of motion for the system are solved exactly
and the complexity of the algorithm is O(N ), i.e., the

3. SPATIAL OPERATOR FORM OF MASS MATRIXcomputational cost grows only linearly with the number
of unconstrained degrees of freedom in the system. The
algorithm—which has been implemented as the NEIMO Now we briefly review the derivation of the spatial oper-

ator equations of motion and refer the reader to Ref. [2](Newton–Euler inverse mass operator method) software
package [2, 16, 17] is based upon closed-form spatial opera- for more detailed discussion on the notation and the con-

cepts. For notational simplicity we limit out initial discus-tor expressions for the factorization and inversion of the
mass matrix. sion to an n-cluster system with serial chain structure and

single degree of freedom rotational hinges between clus-
ters. The number of degrees of freedom for this system is

Expression for the Compensating Torque Tc(k)
N 5 n 1 5. Later we discuss the steps involved in extending
the derivations and algorithms to general tree-topology
systems with multiple degrees of freedom hinges.In general, if g(X) is a scalar function of a matrix X [

Rm3n, then its derivative with respect to a variable y is As shown in Ref. [2], the Newton–Euler recursive equa-
tions of motion for the whole system have the form:given by
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V(n 1 1) 5 0, a(n 1 1) 5 0 populated and, as a result, the computational cost of solv-
ing the equations of motion using this method grows cubi-for k 5 n ? ? ? 1

V(k) 5 f*(k 1 1, k)V(k 1 1) 1 H*(k)u̇(k) cally with the number of degrees of freedom in the system;
i.e., this method is of O(N 3) computational complexity.a(k) 5 f*(k 1 1, k)a(k 1 1) 1 H*(k)ü(k) 1 a(k)

end loop The computational advantage of larger integration time-
steps using constrained dynamics [20] can be lost due to(3.1)

f(0) 5 0 the large computational costs for large molecules from the
O(N 3) dependency.for k 5 1 ? ? ? n

f(k) 5 f(k, k 2 1) f(k 2 1) 1 M(k)a(k) 1 b(k) 1 f̂c(k) In the next section we review an alternative recursive
algorithm for computing the vector of generalized accelera-T(k) 5 H(k) f(k)

end loop tions ü without having to explicitly compute the mass ma-
trix [2]. The complexity of this method is only O(N ); i.e.,
its computational cost grows only linearly with the number

The introduction of spatial operators allows the expression
of degrees of freedom in the model.

of the equations of motion in the following more con-
cise form:

Innovations Factorization of the Mass Matrix

The O(N ) spatial algebra algorithm for solving theV 5 f*H*u̇
equations of motion in Eq. (3.3) described in [2] depends

a 5 f*(H*ü 1 a) on the following key results that give explicit analytical
operator expressions for the square factorization and inver-f 5 f(Ma 1 b 1 f̂c) (3.2)
sion of the mass matrix.

5 fMf*H*ü 1 f(Mf*a 1 b 1 f̂c)

LEMMA 3.1.T 5 Hf 5 HfMf*H*ü 1 Hf(Mf*a 1 b 1 f̂c).

In particular, the equations of motion have the form M 5 [I 1 HfK ]D[I 1 HfK ]* (3.5a)

[I 1 HfK ]21 5 [I 2 HcK ] (3.5b)
T 5 M (u)ü 1 C (u, u̇), (3.3)

M 21 5 [I 2 HcK ]*D21[I 2 HcK ]. (3.5c)

where
Proof. See Ref. [2].

The new square factorization described in Eq. (3.5a) is
M (u) 5

D HfMf*H* [ RN 3N (3.4a)
also referred to as the Innovations Operator Factorization
of the mass matrix and is an alternative to the factorization

C (u, u̇) 5
D Hf(Mf*a 1 b 1 f̂c) [ RN . (3.4b)

in Eq. (3.4). The factor [I 1 HfK ] [ RN 3N is square,
block lower triangular, and nonsingular, while D is a block

Here, M (u) is the mass matrix of the serial chain and C (u, diagonal matrix. This factorization provides a closed form
u̇) is the vector of Coriolis, centrifugal, gyroscopic, and operator expression for the block LDL* decomposition of
Cartesian forces. Note that M and C are nonlinear func- M . The following lemma gives the closed form operator
tions of u and u̇. The factorization in Eq. (3.4) of the mass expression for the inverse of the factor [I 1 HfK ]. Once
matrix M is referred to as the Newton–Euler operator again, the factor [I 2 HcK ] is square, block lower triangu-
factorization [19] because it is equivalent to the recursive lar, and nonsingular and so Eq. (3.5c) provides a closed
Newton–Euler inverse dynamics algorithm in Eq. (3.1). form expression for the block LDL* decomposition of

The solution of the equations of motion in Eq. (3.3) M 21. The spatial operators f, K, and D embedded in these
for the accelerations vector ü is used by the numerical factorizations are based on spatially recursive filtering and
integrator to propagate the state of the system during mo- smoothing algorithms [19, 21, 22]. The following Riccati
lecular dynamics simulations. However, Eq. (3.3) repre- equation for the articulated body inertia P is a key element
sents only a conceptual statement of the dynamics problem of these filtering and smoothing algorithms.
since M and C are not explicitly available. The conven-
tional approach for computing the accelerations ü consists ALGORITHM 3.1. The articulated body inertia quantities

P(?), D(?), G(?), K(?), t(?), t (?), P1(?), and c(?, ?) areof first computing both M and C and solving the linear
matrix equation for the vector ü. In general, M is fully computed by the following recursive procedure:
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P1(0) 5 0 z1(0) 5 0

for k 5 1 ? ? ? nfor k 5 1 ? ? ? N

P(k) 5 f(k, k 2 1)P1(k 2 1)f*(k, k 2 1) 1 M(k) z(k) 5 f(k, k 2 1)z1(k 2 1)

1 P(k)a(k) 1 b(k) 1 f̂c(k)
(3.9)

D(k) 5 H(k)P(k)H*(k)

G(k) 5 P(k)H*(k)D21(k) «(k) 5 T(k) 2 H(k)z(k)

n(k 5 D21(k)«(k)K(k 1 1, k) 5 f(k 1 1, k)G(k) (3.6)

t(k) 5 G(k)H(k) z1(k) 5 z(k) 1 G(k)«(k)

end loopt (k) 5 I 2 t(k)

a(n 1 1) 5 0P1(k) 5 t (k)P(k)

for k 5 n ? ? ? 1c(k 1 1, k) 5 f(k 1 1, k)t (k)

a1(k) 5 f*(k 1 1, k)a(k 1 1)
(3.10)

end loop

ü(k) 5 n(k) 2 G*(k)a1(k)
Algorithm 3.1 is by now the classical [19, 23] Riccati

a(k) 5 a1(k) 1 H*(k)ü(k) 1 a(k)equation of Kalman filtering. Its solution P(k) is the articu-
lated body inertia [19, 24] of the part of the system out- end loop
board of hinge k. The operator P is a block-diagonal 6n 3
6n matrix with its kth diagonal element being P(k) [ R636. This algorithm does not require either the explicit com-
Define also putation of the mass matrix M , nor the numerical solution

of the matrix equation (3.3). The steps in the above algo-
D 5 HPH* [ RN 3N rithm can be summarized as follows:

G 5 PH*D21 [ R6n3N 1. The first step is a recursion from the base to the tip
to compute the orientation, location, and spatial velocities,K 5 EfG [ R6n3n

(3.7) V(k), and the Coriolis and gyroscopic terms a(k) and b(k)
for each of the clusters using the first base-to-tip recursiont 5 I 2 GH [ R6n36n

in Eq. (3.1).
Ec 5 Ef t [ R6n36n

2. Next follows a recursion from the tip towards the
c 5 (I 2 Ec)21 [ R6n36n. base as defined by Eq. (3.6) to compute the P(k)’s etc.

3. The recursion in Eq. (3.9) from the tip to the base
The operators D, G, and t are all block diagonal. The is used next to compute the residual forces z(k) etc. This

operators K and Ec are not block-diagonal, but their only recursion can be combined with the tip to base recursion
nonzero block elements are K(k, k 2 1)’s and c(k, k 2 in the previous step to obtain a single tip to base re-
1)’s, respectively, along the first subdiagonal. The following cursion sequence.
lemma describes the operator expression for the general- 4. Finally, the base to tip recursion described by Eq.
ized accelerations ü in terms of the hinge forces T and (3.10) computes the ü(k) accelerations for all the clusters.
Cartesian spatial forces f̂c .

The computational cost of this algorithm depends only
LEMMA 3.2. linearly on the number of clusters. The structure of this

algorithm closely resembles those found in Kalman filter-
ing and smoothing theory [21, 25].ü 5 [I 2 HcK ]*D21[T 2 Hc hKT 1 Pa 1 b 1 f̂cj] 2 K*c*a

(3.8)
4. COMPENSATING MASS MATRIX TORQUE Tc(i)

Proof. See Ref. [2].
Using Eq. (2.14) as a starting point, we now develop an

expression for the compensating torque Tc(i) that is simple
O(N ) Algorithm for Solving the Equations of Motion

to compute. While we have already seen an expression for
the mass matrix inverse, M 21(u), we need an expressionThe recursive implementation of Eq. (3.8) leads to the

following O(N ) computational algorithm for the accelera- for the derivative of the mass matrix with respect to
hinge coordinates.tions, ü :
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Spatial Operator Expression for Mui
Proof. Two spatial operator identities that we need

for the proof are given by the following equations. Their
LEMMA 4.1.

derivation can be found in the appendix of Ref. [27]:

Mui
5 Hf[Hi

d fM 2 Mf*Hi
d]f*H*. (4.11)

[I 2 HcK ]Hf 5 Hc (4.14a)

fMV 5 (f 2 c) 1 PV. (4.14b)Proof. See Ref. [26].

The matrix Hi
d a new quantity in this result. Hi

d is the The derivation of Eq. (4.13) goes as follows:
6n 3 6n matrix whose elements are all zero, except for a
single 6 3 6 block H(i) at the ith location on the diagonal.

Tc(i) 5
2.11 1

2
Trace hM 21(u)Mu(k)(u)jThe index i corresponds to the joint-angle ui with respect

to which the sensitivity Mui
is being taken. The nonzero

block-diagonal element H(i) [ R636 is obtained as follows
5

3.5c,4.11 1
2

Trace h[I 2 HcK ]*D21[I 2 HcK ]
from the hinge rotational axis unit vector h(i):

Hf[Hi
d fM 2 Mf*Hi

d]f*H*j

H(i) 5 Sh̃(i) 0

0 h̃(i)
D . (4.12)

5
4.14a

Trace h[I 2 HcK ]*D21HcHi
d fMf*H*j

5 Trace hf*H*[I 2 HcK ]*D21HcHi
d fM jThe notation ṽ above denotes the 3 3 3 cross-product

tensor matrix associated with a 3-vector
5

4.14a
Trace hc*H*D21HcHi

d fM j

5
4.13

Trace hVHi
d fM j

v 5 1
x

y

z
2 5 Trace hfMVHi

dj

5
4.14b

Trace h(f 2 c 1 PV)Hi
djand is defined as

5 Trace hPVHi
dj.

In the above steps, we have used the fact that Trace hABj 5ṽ 5
D 1

0 2z y

z 0 2x

2y x 0
2 .

Trace hBAj. Also, the last step used the fact that
Trace h(f 2 c)Hi

dj 5 0. This is true because (f 2 c) is
strictly lower triangular and Hi

d is block diagonal.
The formula in Eq. (4.11) is closed-form, in the sense that

It has been shown in Ref. [19] that V can be decom-it contains an explicit analytical expression for the mass
posed asmatrix sensitivity in terms of the operators f, M, and H

appearing in the mass matrix itself. That the formula is
closed-form is of extreme importance, because it implies V 5 Y 1 c̃*Y 1 Yc̃, (4.15)
that the mass matrix derivatives can be easily computed
using operations and spatially recursive algorithms similar

where c̃ 5
D

c 2 I, and the diagonal elements Y(k, k) [to those used to compute the mass matrix itself.
R636 of the block diagonal matrix Y [ R6n36n are defined
via the recursion:Spatial Operator Expressions for Tc(i)

The following lemma uses Lemma 4.11 to develop a new
Y(n 1 1) 5 0

expression for Tc(i).
for k 5 n ? ? ? 1

LEMMA 4.2.
Y(k) 5 c*(k 1 1, k)Y(k 1 1)c(k 1 1, k) (4.16)

Tc(i) 5 Trace hPVHi
dj,

(4.13) 1 H*(k)D21(k)H(k)

end loopwhere V 5
D

c*H*D21Hc [ R6n36n.
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This allows us to further simplify the expression for Tc(i) the compensating torque vector for the six base cluster
degrees of freedom is zero.as described in the following lemma.

LEMMA 4.3. O(N ) Constrained Dynamics Algorithm with
Compensating Potential

Tc(i) 5 Trace hP(i)Y(i)H(i)j. (4.17)
The overall algorithm for solving the equations of mo-

tion with the compensating mass matrix potential is definedProof. Using Eq. (4.15) in Eq. (4.13) it follows that
by the following steps:

Tc(i) 5 Trace hPVHi
dj 5 Trace hP(Y 1 c̃*Y 1 Yc̃)Hi

dj 1. Carry out the first base-to-tip part of the recursion
in Eq. (3.1) to compute the V(k), a(k) and b(k) terms for

5 Trace hPYHi
dj 5 Trace hP(i)Y(i)H(i)j.

all the clusters.

2. Carry out the tip-to-base recursion in Eq. (3.6) toHere we used the fact that Trace hPYc̃Hi
dj 5 0 because c̃

compute all the articulated body inertia quantities such asis strictly lower triangular.
P, D etc.

A final simplification step for Tc(i) is described in the 3. Carry out the base-to-tip recursion in Eq. (4.16) to
following lemma. compute Y(k) for all the links. Also compute the compen-

sating torque Tc(k) for each link simultaneously using Eq.LEMMA 4.4. Let the partitioned form of the 6 3 6 matrix
(4.18) and T9(k) using Eq. (2.10).P(i)Y(i) be given by

4. Carry out the recursions in Eq. (3.9) and Eq. (3.10)
to solve for the ü(k) hinge accelerations with T(k) replaced

P(i)Y(i) 5 SQ11 Q12

Q21 Q22
D , with T9(k).

The only significant change from the constrained dynamics
algorithm in [2] is the additional Step 3 for the compensat-where Qij [ R333. Then
ing torque. This additional step is also of O(N ) computa-
tional complexity, and hence, the overall computationalTc(i) 5 2h*(i)F [Q11 1 Q22], (4.18)
cost of the constrained dynamics algorithm remains O(N ).
Moreover this method adds only marginal cost since itwhere the mapping F [?] : R333 R R3 is defined via the
makes use of the articulated body inertia quantities avail-relation:
able from the computations for the regular solution for the
internal coordinate accelerations. This algorithm makes

v 5 F [A] if and only if ṽ 5 A 2 A* possible the easy incorporation of the compensating poten-
tial into potential into constrained molecular dynamics sim-

Proof. We have ulations involving tree-topology molecular systems. This
algorithm has been implemented as a part of the NEIMO
software package.

P(i)Y(i)H(i) 5 SQ11h̃(i) Q22h̃(i)

Q21h̃(i) Q22h̃(i)
D (4.19)

Extensions

Reference [28] describes an alternative method for com-Therefore,
puting the Y(k) terms using dual articulated body inertias
instead of Eq. (4.16). This method offers advantages forTrace hP(i)Y(i)H(i)j 5 Trace h(Q11 1 Q22)h̃(i)j.
parallel implementation since these computations can be
done concurrently with Step 2 instead of sequentially fol-Using the easily established identity that Trace hAṽj 5
lowing it.

2v*F [A] for an arbitrary matrix A [ R333 and vector
The derivations and algorithmic descriptions in the pre-v [ R3 in Eq. (4.19) establishes the result.

vious sections have focused upon serial-chain molecules
with one degree of freedom rotational hinges. This wasNotice that this expression for Tc(i) is vastly simpler

compared with the original expression involving the mass done for notational simplicity. The extension of the algo-
rithm to tree-topology molecules is identical to the exten-matrix inverse and its sensitivity. Furthermore, the expres-

sion involves articulated body inertia quantities many of sion discussed in Ref. [2]. In this case the system has multi-
ple tips and a single designated base cluster. To summarize,whom are available from the computational steps for solv-

ing the equations of motion. It is easy to verify that the all the tip-to-base and base-to-tip recursions are replaced
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by tips-to-base and base-to-tips recursions. At each hinge tree-topology molecular systems. The algorithm is an ex-
tension of the previously described O(N ) algorithms forwith branches, the recursions proceed through ‘‘scatter’’

and ‘‘gather’’ steps. To handle multiple degree of freedom internal coordinate molecular dynamics simulations. The
computational complexity of the new algorithm remainshinges, it is simply a matter of recognizing that such hinges

can be modeled as a sequence of single degrees of freedom O(N ). Extension of this compensating potential algorithm
to closed-topology molecular systems is the subject of on-hinges interconnected by pseudo-clusters of zero mass and

inertia. With these modifications, the algorithm described going research.
above extends to general tree-topology molecular systems.
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