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Abstract. This paper discusses an approach for sensitivity analysis of multibody dynamics using spatial operators. The
spatial operators are rooted in the function space approach to estimation theory developed in the decades that followed
the introduction of the Kalman filter and used extensively by authors to develop a range of results in multibody dynamics.
The operators provide a mathematical framework for studying a wide range of analytical and computational problems
associated with multi-body system dynamics. This paper focuses on the computation of the sensitivity of the system mass
matrix for tree-topology multibody systems and develops an analytical expression for the same using spatial operators. As
an application example, the mass matrix sensitivity is used to derive analytical expressions based on composite body inertias

for the Christoffel symbols associated with the equations of motion.

1 Introduction

Kalman introduced the notion of a state space, and a recursive filter [Kalman 60] that computes the best estimate of the
state from possibly noisy past measurements. The optimal Bryson [Bryson 63] smoother computes the best state estimate
using both past and future data. Although several authors seemed to have arrived at similar results at approximately the
same time, Kailath [Kailath 70, Kailath 74] was most likely the first to recognize many new techniques. He introduced
the “innovations” approach, which when specialized to state space systems was a more advanced way to derive optimal
linear estimators such as the Kalman filter. He also recognized the value to estimation theory of powerful mathematical
techniques (Gohberg and Krein) to factor positive operators into a product of two closely related integral operators with
triangular kernels. The function space approach reached maturity in the work of Balakrishnan [Balakrishnan 77], who
introduced the elegant methods of Hilbert space. At the end of this period, we knew how to easily solve very complicated
linear filtering problems using linear integral operators, operator factorization methods, and triangular (Volterra) factors.

In the mid 1980’s, the authors recognized [Rodriguez 87,Rodriguez 92b, Rodriguez 90] that the equations of mechanical
systems had an almost perfect analogy to those of state space linear systems. Discovery of this analogy allowed the use
in mechanics of very advanced methods and computational architectures (Kalman, Bryson, Riccati, etc.) that had emerged

from estimation theory. Also, the parallels led to the introductiospdtial operatorso succinctly describe at a high-



level complex multibody dynamics quantities and relationships. The rich structural properties of the spatial operators and
the ability to do mathematics with them to derive new reletionships and computational algorithms led to the coining of
the spatial operator algebra term for this multibody dynamics framework. An overview of the spatial operator algebra
can be found in [Rodriguez 91, Jain 91, Jain 00]. Some of the contributions of the spatial operator approach include the
closed-form expressions for the mass matrix, €hg\) algorithms for the computation of tt@perational space inertia

matrix [Kreutz-Delgado 92], the dynamics of under-actuated systems [Jain 93a], diagonalized dynamics formulations [Jain
95] etc.

In this paper we describe our recent results which use an analytical approach for tree-topology multibody dynamics
sensitivity computations using spatial operators. Sensitivity computations arise in problems involving optimization, lin-
earization, nonlinear analysis and control of multibody systems. Example multibody applications where such sensitivity
computations are useful can be found in [Jain 93b, Jain 95]. The key role of the system mass matrix in multibody dynam-
ics implies that its sensitivity plays a central role in most multibody sensitivity analysis. The mass matrix sensitivities also
underly the velocity dependent gyroscopic and Coriolis terms that appear in the Lagrangian form of the equations of motion.

In practice, due to the complexity of the dynamics quantities, numerical differentiation techniques are often utilized
for such multibody sensitivity computations. Not only are these techniques non-robust, they also introduce errors and are
computationally expensive. In this paper we focus less on the computational issues, and more on using the spatial operator
approach for sensitivity computations to develop new relationships. In particular we establish connections between the
mass matrix sensitivities and the composite rigid body inertias which play a key role in inverse dynamics problems. As
illustration, these relationships are used to develop closed-form expressions for the well know Christoffel symbols that are
related to the non-linear velocity dependent gyroscopic and Coriolis terms in the equations of motion. One interpretation
of this analysis is the natural bridging between the abstract Langrangian expressions for these velocity dependent terms
and the component level expressions that can be used for computations. References [Jain 99, Bestle 92a, Bestle 92b, Chang
85, Eberhard 96, Hsu 01, Haug 84, Serban 98] contain additional detailed discussion of the computational and other aspects
of multibody sensitivities.

The promise of the spatial operator approach is:

e Itis applicable to large-dimensional systems, is accurate and is computationally efficient, as it makes use of the highly
developed Kalman filter computational architecture. This adds an enormous amount of algorithmic and computational
robustness to the evaluation of analytical terms, the sensitivity of the mass matrix with respect to any given joint angle

for example, that are otherwise typically evaluated by symbolic or numerical differentiation.

e The sensitivities of the spatial operators are expressed in terms of the spatial operators themselves, which implies



that the sensitivities for the mass matrix can be evaluated by spatial recursions quite similar to those associated with
recursive evaluation of the mass matrix itself. This property also implies that if necessary higher-order sensitivities

could be computed by applying the spatial operator sensitivity formulas derived here repeatedly.

Such exact methods for computing mass matrix system model sensitivities, in contrast to the use of approximate methods,
are relatively easy to implement with spatial recursions that are already being used to implement the evaluation of the mass
matrix itself. There is no need to introduce additional numerical computations that may be specified within a framework
that does not exactly match that which is being used to evaluate the mass matrix. Instead, the spatial recursions that are
used to evaluate the mass matrix itself, or alternatively to implement the original system equations of motion, provide
the computational structures to evaluate the system mass matrix sensitivities. This feature, the commonality in the spatial
recursions needed for both the mass matrix and its sensitivities, also applies for efficient evaluation of the velocity dependent
Coriolis term in the original equations of motion. An added benefit of using spatial operators to specify the spatial recursions
is that the system mass matrix sensitivities can be computed with exactly the same spatial operators. This is a unique feature
of the spatial-operator-based method that is being described here.

The set of spatially recursive methods embodied by the spatial operator algebra have been applied to a large variety of
systems including: analytical design, software development, real-time hardware in the loop simulation, and flight operations
for several planetary spacecraft [Jain 92a, Biesiadecki 96]: dual-arm robotic space systems; and large-scale simulation of
molecular systems for use in addressing such problems as the analysis of protein-folding and new medicinal drug design
[Jain 93c]. While this present paper focuses primarily on theoretical issues, the motivation for the work is drawn from many

practical applications [Jain 92a, Biesiadecki 96, Jain 93c] where the methods are currently in use.

1.1 Overview of Spatial Operators for Serial Chain Systems

The aim of this subsection is to summarize briefly the essential ideas underlying spatial operators leading up to the Newton-
Euler Operator Factorization (¢) = H¢pM ¢* H* of the manipulator mass matrix. While this is done here for a serial
chain manipulator, the factorization results apply to a much more general class of complex joint-connected mechanical
systems, including tree configurations with flexible links and joints [Jain 92b].

Consider a serial manipulator wifk rigid links in Figure 1. . The links are numbered in increasing order from tip to
base. The outer-most link is link and the inner-most link is link/. The overall number of degrees-of-freedom for the
manipulator is\'. There are two joints attached to th& link. A coordinate frame?,, is attached to the inboard joint,
and another framé),j_1 is attached to the outboard joint. Fraifig is also the body frame for thie” link. The k'” joint
connects thék + 1)** andk'" links, and its motion is defined as the motion of fraég with respect to framé&;". When

applicable, the free-space motion of a manipulator is modeled by attaching a 6 degree-of-freedom joint between the base
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Figure 1: lllustration of links and joints in a serial rigid body system

link and the inertial frame about which the free-space motion occurs. However, in this paper, without loss of generality and
for the sake of notational simplicity, all joints are assumed to be single rotational degree-of-freedom joints kit jdhe
coordinate given by (k). Extension to joints with more rotational and translational degrees-of-freedom is easy [Rodriguez
92a].

The transformation operatgi(k, k — 1) between th&);,_; andO;, frames is

ok k—1) = < by )eRM

wherel(k, k — 1) is the vector from fram&);, to frameO;,_,), andi(k, k — 1) € R3*3 is the skew—symmetric matrix
associated with the cross-product operation.

The spatial velocity of thé'" body frameQ,, is V (k) = [w*(k),v*(k)]* € RS, wherew(k) andv(k) are the angular
and linear velocities of);,. With h(k) € R® denoting thek!” joint axis vector,H (k) = [h*(k),0] € R' x RS denotes
the joint map matrix for the joint, and the relative spatial velocity acrossg:thgoint is H* (k)6 (k). The spatial force of
interactionf (k) across the:" joint is f(k)= [N*(k), F*(k)]* € RS, whereN (k) and F(k) are the moment and force

components respectively. Tlex 6 spatial inertia matrixV (k) of the k" link in the coordinate framé;, is

B Jk)  m(k)p(k)
M(k) = <_m(l<:)]3(k) m(k) I )

wherem(k) is the massp(k)e R? is the vector fronm0, to thek!” link center of mass, and (k)eR>*3 is the rotational

inertia of thek?” link about®y,. I5 is the3 x 3 unit matrix.



The recursive Newton—Euler equations are [Luh 80, Rodriguez 87]

V(N +1)=0; aN+1)=0
fork = N---1
V(k) = ¢*(k+1k)V(k+1)+ H*(k)0(k)
alk) = o*(k+1,k)alk+1)+H*(k)O(k) + a(k)
end loop
f(0)=0
fork =1--- N
f(k) = ok k—1)f(k—=1)+M(k)o(k) + b(k)
T(k) = H(k)f(k)
end loop

whereT' (k) is the applied moment at joiit. The nonlinear, velocity dependent tera(g) andb(k) are respectively the
Coriolis acceleration and the gyroscopic force terms fortfidink.
The “stacked” notatior= col {H(k)} e RV is used to simplify the above recursive Newton-Euler equations. This

notation [Rodriguez 91] eliminates the arguméntssociated with the individual links by defining composite vectors, such

as#, which apply to the entire manipulator system. We define
T = col {T(k)} eRYN  V=col V(k)} e ROV
f=col} f(k)} € RN a = col a(k)} € RN
(k)} e RN b= col b(k)} e RN

In this notation, the equations of motion are [Rodriguez 87, Rodriguez 92b]:

a=col{a
V=¢"H"0; o=¢ [HG+a (1.1)
f=¢[Ma+b); T=Hf=Mi+C (1.2)

where the mass matri%(6) = HoMH*; C(0,0)= Hp|[M¢p*a + b € RV is the Coriolis termH = diag {H(k)} €
RAXON; M = diag { M(k) } € ROV, andg € ROA X6V

I 0 ... 0
62,1) I ... 0
o=(T—&)" = : : o (1.3)
o(n,1) o(n,2) ... I
with ¢(i, §) = ¢(i,i —1)---¢(j + 1, 4) for i > 5. The shift operato€, € R >V is defined as
0 0 0 0 0
#(2,1) 0o ... 0 0
E5 = 0 ?(3,2) ... 0 0 (1.4)
0 0 ... GNN-1) 0

Using spatial operators one can obtain operator factorizations of the mass matrix and its inverse as follows:



Identity 1.1
M=H¢oM¢o*"H*

= [I + H)K|D[I + HYK]*
[I+H¢K| '=1-HyK
M =[I - HYK|*D ' [I - H)K]

These identifies have been used extensively [Rodriguez 87, Rodriguez 92b, Rodriguez 90, Rodriguez 91, Jain 91, Jain
00, Jain 93b, Jain 95], to develop a variety of spatially recursive algorithms for forward dynamics, for both rigid and flexible
multi-body systems of arbitrarily specified topologies, as well as closed-form analytical expressions for the inverse of the
mass matrix. The spatial operata¥s D correspond to a suitably defined spatially recursive Kalman filter, with the spatial
operatorK representing the Kalman gain for this filter. We also refer to these operatald and K as"articulated”
guantities, because of their relationship to the articulated inertias first introduced by [Featherstone 83].

The approach presented here to compute sensitivities for the mass matrix and the spatial operators embedded in it has
been extended to be able to compute sensitivities of the articulated operators. We have used [Jain 95] such sensitivities of
articulated operators to evaluate explicitly the Coriolis term in a diagonalized version of Lagrange’s equations of motion.
However, it is beyond the scope of this article to address the issue of how to compute sensitivities for these articulated
operators. We will therefore not go any further in this direction, but instead will focus on the process of computing the
sensitivity of spatial operators associated with the mass matrix itself. For the purpose of this discussion, we focus attention
on serial chains with single-degree-of-freedom hinges. We will maintain this focus in the rest of the paper, although the

generalization to general tree-topology systems and hinges in straightforward.

2 Preliminary Notation

We introduce some preliminary notation that will simplify the evaluation of the spatial operators embedded in the mass
matrix. Specifically, we introduce: 1) a shift-operathand develop some of its properties; 2) a 6-dimensional skew-
symmetric operator, analogous to the cross-product of ordinary 3-dimensional vector algebra; and 3) a set of “pick-off”
operatordl’, HY, andH} that, when applied to any given spatial vector, have the effect of “picking-off” or operating only

on quantities associated with ti#& hinge in this vector. While introducing these quantities may appear to be somewhat
arbitrary at this stage, they will subsequently prove themselves quite useful in streamlining the sensitivity computations that

are the focus of this paper.



2.1 The Shift operatorS

We first introduce and define thehift operator S € RV <6V consisting 0ofR%*6 block elements with the only non-zero
ones being the identitR5*% elements along the first sub-diagonal.  Some useful properties of the shift ok e@r

defined in the following lemma.

Lemma 2.1: Properties of the shift operator S

Given block diagonal matriced and B, the following relationships hold:

(SAS*)SB = SAB
(S*AS)S*B = S*AB
AS*(SBS*) = ABS*

AS(S*BS) = ABS

(SAS*)(SBS*) = SABS*

(S*AS)(S*BS) = S*ABS

Special Cases:

(SS*)SA =SA SA(S*S) =SA
(S*S)S*A=S*A S*A(SS*) = S*A
(S*S)AS* = AS* A(S*S)S* = AS*
(SS*)AS = AS A(SS*)S = A4S
Proof: Use direct evaluation to verify these identities. [ |

2.2 The spatial vector cross product

With 2 2 m ande £ [Z] in RS, define thes-dimensional cross-product  operation as:

< B

zxc—20—<~xa~ ) where z 2 ( 0:?’) (2.5)
ya + Tb T

For 3-vectors, theé: terminology denotes the standard 3 by 3 skew-symmetric matrix associated with the 3-vector cross-
product operation.

The following lemma provides an intuitive rationale for extending the “cross-product” terminology above from 3-vectors

to 6-vectors.



Lemma 2.2 Spatial vector cross-product identities

We have the following identities for the spatial vector cross-product:
AA=0 and AB= —-BA (2.6)

whereA and B are two given spatial vectors.
Proof: The identityA A follows from the skew-symmetry.&f The remaining are established by verification for arbitrary

vectorsA and B. [ ]

Note that the abovekew-symmetriproperty holds even though unlike in the 3-dimensional case? thatrix for 6-
vectors isnot skew-symmetric! The differential geometric interpretations and propertigs(of, and of the 6-dimensional
cross-product, are discussed further in [Li 89, Murray 94]. Theperator defined above is a natural generalization to
spatial quantities of the 3-dimensional cross-product operator.

For notational convenience we also define the operaipsi which is closely related to the cross-product operation as

S[G)]=G )0} &

wherezx andy are arbitrary 3-vectors.

follows:

SIS

Also, with theskew-symmetric matrix — defined as

v ) 2.8)

LS}
R
1>
/N
< &
=)
P

the following relationships can be verified:
A*B=Q[BJA=—-Q*[BJA or S[A]B=-Q[BJA (2.9)

Thus theQ operator is in a sense the adjoint of tleperator for spatial vectors. Just as the 3-dimensional cross-product
defines the Lie bracket for the(3) Lie-algebra for thesO(3) Lie group, the 6-dimensional cross-product defines the Lie
bracket for thead Lie algebra associated with th&d Lie group made up of the*(-) elements. The identities in Eq. 2.6

are just special cases of identities that involve the Lie bracket operation.

Lemma 2.3: Identities involving Q(-) and ¢(, )
For an arbitrary 6-vectorX, we have the following identities:
Qp()X] = ¢(Q[X]o™ (1)
Slo*(1)X] = o~ (DS [X] 6(1)
[o*(DX] = 6" ()Xo~ (1)

(2.10)



The second identity parallels the well known iderrﬁ)y: RIR*, wherefR is a rotational matrix and is a 3-vector. This
is a well know differential geometric identity that applies in generallid and ad representations.
Proof: The first two identities can be established by verification for arbitrary 3-ve¢tansl X. The last one is a simple

restatement of the second identity. | |
2.3 TheH’, H, and Hj operators

We defineH(i) as

H() £ §*[H"(i)] = ( h(()i) /}(()z') > 2.11)
H is the block diagonal matrix defined B§ (k, k) = H(i)dy<;, i-€.

i _f H@) fork >
H (k. k) = { 0 for k < i (2.12)

We similarly also define the block diagonal matrid&sandHj as havingH(i) along the block diagonal in the following
manner:

H(k, k) = H(i)0k<;, and H5(k, k) = H(i)6p= (2.13)

In the above, thé.,,.4 notation is defined such that its valudig cond is true and i$) otherwise. There is an important new
quantity in this result, and it has a simple physical interpretation. The nirig the6\" x 6 matrix whose elements are
all zero, except for a singlé x 6 block H(4) at the;*" location on the diagonal. The indéxorresponds to the joint-angle
6; with respect to which the sensitivity1y, is being taken.
Note that
H'=H. +H;, and H.=S*H'S (2.14)

Also, H', H! andH} are all skew-symmetric.

Lemma 2.4: Composition of HY etc. with arbitrary matrices.

For a given matrixX we have that, ‘

[(XH,](k, ) = X (k, j)H(i)d;<i
[H'X](k, j) = H(i) X (k, j)dr<i
[XH] (K, j) = X (k, j)H(i)d;<i (2.15)
[H X (k, j) = H()X (k. j)Ok=i
[XHG)(k, 5) = X (k, j)H(1)8;—;

[(XHGY](k, 5) = X (k, )H@Y (i, )



Proof: These identities are established by simply evaluating the products on the right hand side of the equatiollls.

Define
<. a( ok O
Qk) 2 ( 0 ) > (2.16)
and
Q=3 HOG), Q=) HE@), Q=) Hi()
, pt ,
Q is the spatial cross product matrix associated with the spatial v@¢tor whereQ (k) is defined as:

Q) 2 [“’g‘“)} 2.17)

Note that
Q=0,+Qs, and Q, =S50S (2.18)

3 Sensitivity Computations

Given the generalized coordinates vedt@nd a multi-valued functiog(¢), our general approach to computing its sensi-

tivity will be to first compute an expression for its time derivati@) and then use the relationship

o) = 20

9g

to obtain?4?) from thei*" column of 24¢).

[2]
3.1 Sensitivities ofp(k + 1, k), H(k) and M (k)

Having defined a set of useful quantities that will play a key role in streamlining subsequent derivations, we now begin
a process of systematically evaluating spatial operator sensitivities at two distinct layers of abstraction. First, we derive
sensitivities for spatial operators defined at each lif(k; + 1, k) for example, and then we derive similar sensitivities for

spatial operators) for example, defined over the entire span of the serial-chain system.

Lemma 3.1: Time derivatives of ¢(k + 1, k), H (k) and M (k)

We have that

M (k) = Q(k)M (k) — M (k)Q(E) (3.19)
H*(k) = Q(k + 1)H* (k) (3.20)
Ok +1,k) = Qk + Dok + 1,k) — ¢(k + 1,k)Q(k + 1) (3.21)

10



LK) = ( 8 @(Hf)%‘(k/JrLk) ) _ ( 8 &;(k+1)l7(k+1,k)6@(k+1,k)w(k+1) ) (3.22)

Also,
H* (k) = {a’(’“ +Ol)h(k)] — Ak + 1) H* (k) (3.23)

Also,

ry - (@RI (k) = T(k)w(k) mk)@E)p(F)]™ \ _ g _ :
M(k) = ( (k) @ (R)p(k)]” 0 ) = Q(k)M (k) — M (k)2 (k) (3.24)
|
Lemma 3.2: Sensitivities of ¢(k + 1, k), H (k) and M (k)
[o(k +1,k)]y, = [H()p(k + 1, k) — ¢(k + 1, k)H(i)] - o<
|0 for k>4 305
{ H()é(k + 1, k) — o(k + 1L, )H@) for k> (3.25)
O~ for k>4
[H* ()}, = H(i) H* (k)6r<; = { {h(i)h(k)] for k< (3.26)
0

M0, = EOME) - MOEO< = { fyonr - ooy for ke (3.27)
Proof: Follow directly from Lemma 3.1. |

3.2 Operator sensitivities ofp, H, M

Now we proceed to compute sensitivities for the operapold , M which together constitute the Newton-Euler factoriza-
tion M = Hop M ¢* H* of the mass matrix.

Define the operataf 4 as follows.

#(2,1) 0
0 ?(3,2)
Ay = : . (3.28)
6 oo d(n+1,n)
Note that
Ey =SAy (3.29)



Lemma 3.3: Time Derivatives of Spatial Operators

Ay =QA, — AyQ, (3.30)
Ey = Oy — Es0 (3.31)

H*=Q,H* (3.32)
M = QM — MQ (3.33)
¢ = 60 — 60 = $Q056 + Q0 — ¢ (3.34)

Proof: Eq. 3.30 can be derived by assembling the component time derivatives of Eq. 3.28 from Eq. 3.21. Eq. 3.32 follows
by applying the identities in Lemma 2.1 to Eq. 3.30. Eq. 3.32 and Eq. 3.33 are simply matrix versions of Eq. 3.20 and Eq.
3.19 respectively. For Eq. 3.34 we have that

b= —dd~ 1o = —¢[I — Es) = pEpp = Qs — Es0]0 = 0P — G0

|
Lemma 3.4 : Operator sensitivities of o, H, M
[Agle, = HyAy — AgHL (3.35)
[Es)o, = HIE; — £ HL (3.36)
[lo, = oH5¢ — ¢H' + H.o (3.37)
[lo, (k. 5) = [@(k, )H(i)$ (4, )0k — d(k, j)H(3) + H(i) (K, j)dk<ildj<i (3.38)
[H*)p, = H,H* (3.39)
[M]o, = H'M — MH" (3.40)

Proof:
[Eslo, = S[Ag]o,

Sincep = [I — &1
[Blo, = —dlo 10,0 = GIH'Ey — ESHL] G = ¢H'G — PHL ¢ = ¢Hjp — oH' + H'g

[Blo: (K, j) = ¢k, )H(i) 9 (i, §)0kziz5 — Pk, HH(E)F5<i + H(E)p(k, 7)dk<i

= [¢(k, )H(1)¢(i, )0k >i — (K, 3)H(2) + H(2)¢(k, 7)<l <i

12



Lemma 3.5: Sensitivity of H¢

[Hg¢] = Ho[Q56 — Q)
‘ ‘ (3.41)
[Hglp, = Ho[H}¢ — H']

Proof:

[Holo, >* Hy ¢+ Hey, = Ho[Hjp — H']

4 Mass Matrix Related Sensitivities

We now proceed to evaluate sensitivities for the mass matrix, using its Newton-Euler factorEHatibfi¢™ H* as a point

of departure. The main difference in computing mass matrix sensitivities, when compared to the sensitivities we have
computed up to now, is that the mass matrix is "quadratic” in the spatial operatord H. That is, the spatial operators

¢ and H each appears twice in the Newton-Euler mass matrix factorization. This property suggests that application of
the basic idea of chain-rule differentiation should be sufficient to compute the mass matrix sensitivity. This is indeed what

happens, as we show below.

Lemma 4.1: Sensitivity of ¢ M ¢*

[0M$*)g, = [pHf + HL]pM¢* — ¢ M¢* [Hy* + H.] (4.42)
Proof:

[6M¢*]o, = (8o, M " + oM [¢l;, + ¢ Mo, 6"
= [pH'¢ — HIG|M¢" + oM[¢"HiG" — §"H'¢"] + [H'M — MH']¢"

= [¢H; + H J¢M¢* — oM ¢*[Hjo* + H(]

Lemma 4.2: Sensitivity of the Mass Matrix M; = [H¢M¢*H*]9i

Mo, = Hp[H;¢o M — Mo Hj|¢" H (4.43)

13



Proof:
My, = Hp,p Mp*"H™ + Hnggb*H;i + H[pM ¢*lo, H* = Hg| f;qSM — M(;S*Hf;]gb*H*
[ |

This is one of the central results of the paper. Lemma 4.2 establishes how to compute the mass matrix sensitivity with
respect to an arbitrary hinge andlg in terms of the spatial operat@ritself. The spatial operatas appears a total of 4
times in the mass matrix sensitivity, whereas it appears only twice in the original Newton-Euler factotHatiufy* H *.
However, in both cases, that of the mass matrix and its sensitivity, it is the same opetfaadplays a central role. This
means that process of computing the mass matrix sensitivity is “closed”, in the sense that the samejoipetaippears in
the mass matrix also appears in its sensitivity. The only new operator that appears in the sensitivity, and which does not show
up in the mass matrix Newton-Euler factorization, is the “pick-off” operé&thr However, this operator is memoryless, in
the sense that no spatial recursions are needed to compute it, in contrast to the @petatbrinvolves an inward (from
the tip to the base) spatial recursion. It is therefore possible to observe that, aside from the presence of the relatively trivial
memory-less operatdf?, all of the operators in the mass matrix sensitivity are identical to those in the original mass matrix
factorization. The main significance of this observation is that spatial recursion set up to evaluate the mass matrix can also
be used as a basis to also evaluate its sensitivity coefficients. Before proceeding further, we state below without proof an

alternative expression for the sensitivity of the mass matrix using articulated body inertia quantities.

Lemma 4.3 Alternative expression for My,

Note that sinceM¢* H* = [I + ¢ K H|P¢* H*,

My, = HY[H4(I + ¢KH)P — P(I + ¢K H)*Hj|¢"H*

5 Composite Rigid Body Inertias Based Sensitivities

Now that we have developed closed-form expressions for the mass matrix sensitivity, we shift our focus slightly to look at
the computational aspects. TBemposite Rigid Body Inertias(CRB) were introduced in [Walker 82] to develop efficient
algorithms for the computation of the system mass matrix. As we will see below, the CRB also play a key role in deriving
expressions for the mass matrix sensitivities that are simpler to evaluate. We begin by providing some background on the

composite rigid body inertias.

14



5.1 The Composite Rigid Body Inertias

Thecomposite rigid body inertia , R(k), at thek!” link is the effective spatial inertia &, of the outboard linkg - - - 1
assuming that they form a composite rigid (augmented) body obtained by freezing tingés- - - 1. In general the value

of R(k) is not a constant and rather depends on the configuration of the Hintlgesugh(k — 1). Clearly, R(1) = M (1),

the spatial inertia of link 1R (2) is the spatial inertia a®- of links 1 and 2 regarded as a composite rigid body formed by
“freezing” hinge 2 and ignoring the inboard links. Now let us examine how we might go about assembling these composite
rigid body inertias for all the links. The composite rigid body inerfi?(k), at thek" link can be obtained by using the
parallel axis theorem to combine together the composite rigid body in@(fia- 1) at link (k — 1), with the spatial inertia,

M (k) of thek*" link. This procedure gives us the tip-to-base recursive computational algorithm in Eq. 5.44 for assembling
the composite rigid body inertias for all the links in the serial chain.

Recursive Computation of Composite Body Inertias

R(0)=0
fork =1---n
R(k) = ¢(k.k— DR(E— 16" (k. k — 1) + M(k) (544
end loop
Lemma 5.1: Decomposition of the Mass Matrix
We have the following decomposition of the mass matrix into diagonal and triangular factors:
M=HRH* + H)RH* + HR¢*H* (5.45)
Proof: See [Jain 91]. [ |
From this decomposition it follows the the elements\dfare given by the following expression:
H(i)R(i)H* () fori=j
M(i,j) = H@)o(i,j)R(j)H(j) fori>j (5.46)
M*(4,17) fori < j

5.2 Inertial frame reference quantities

The hinge magH * (k) characterizes the relative spatial velock* (k)6(k) across the:*” hinge with the hinge framé;,
as the velocity reference frame. However one can also choose an inertially fixed frame - derastéite velocity reference
frame. This choice helps simplify some of the analytical expressions as seen below. the corresponding hiHgg(kjap
is given by

I(IL, k)h(k) (5.47)
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st (] = ot koD = (M 20) (5.4
Thus, for any spatial vectoX,
H: (i) X = —Q[X]Hy" (i) (5.49)

Note that the corresponding inertial frame referenced CRB inertia - deditytgd - is given by the relation
Ry(k) = ¢(n, k) R(k)¢™ (n, k) (5.50)

The following lemma provides an alternative operator expression for the mass matrix sensitivity using the composite
rigid body inertia operators. These expressions are easier to evaluate as illustrated by the later results which provide

expressions for the component elements of the mass matrix sensitivity.

Lemma 5.2: CRB Based Expression forMy,

My, = H [¢[H;R — RH}]¢" + oH;0R — RS Hyo" | H* (5.51)

Proof: The above expression follows from the use of Eq. 5.46 in Eq. 5.52.

Lemma 5.3: Component elements ofM,
We have that
Mo, (4, k) = Mo, (k, j)
= H(k)|o(k, 1)[H(i) R(i) — R()H(0)]¢" (5, 1)0k,j>i
+ ¢(k, )H()0 (6, ) R(5)dj<i<k — R(K)P™ (4, K)H(1)¢" (4, 1) On<i<; | H™(])
= Hy(j)[Hi(i) Ra(k)dk<ic; + Ra(j)Hy ()0 <i<k + {Hi(é) Ra(2) + Ry(i)Hy (i) } 0k i Hi" (k)

Hy(j)Hy (i) Ry(k)Hy" (k) forj>i>k
-{ 0 forj, k <i

| BOEORG + RGO H ) fork >

(5.52)

Proof: Note thatMy, (j,k) = 0forj, k <.

Mo, (. F) = H(k){qs(k,i)H(i)[gﬁqu*](i,j)am - [¢M¢*]<k,i>H<i>¢*<j,i>5j>i}H*<j>
— H () [o(k. )EG)R() ~ ROBOG G050 + 0k, VE()0(, 1) RG) <icr

— R(k)o" (i, K)H(i)¢" (4, 1) Or<ic; | H™(4)
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This result shows an explicit expression for the sensitivity with respect to lingethe general matrix eleme! (j, k).

The key quantity involved in this expression is the composite body inBtia evaluated at the same hingeSince both

the argument in R(¢) refer to the same hinge, this means that it is possible to compute this quantity with a single spatial
recursion, going in the inward direction from the tip of the serial-chain to the base. This recursive algorithm is outlined in
the following result. The above result implies that once we have either dRftagor Ry (i) composite rigid body inertias

computed (using Eq. 5.44), it is a simple matter to obtain the individual elements of the mass matrix sensitivity matrix.

5.3 Christoffel Symbols

Christoffel symbols play a key role in multibody dynamics quantities and can be used to compute the Coriolis and gyroscopic
velocity dependent acceleration terms. Recall that the Christoffel symbols are defined as

s L[OM)) | OM(k)  OM(LK)
GOk =35 "5am + "aeG) 00

(5.53)

The symmetric matrix C; whose elements are the Christoffel symbols is such that the Coriolis joint force elements are
given by the expression

C(i) = 6*C;6

For a tree't0p0|ogy System,
OM(k, j)

Also C;(j, k) is a function ofg(1) - - - 6(m — 1) alone wheren 2 maz(i, J, k).

Lemma 5.4 : Expressions for Christoffel symbols using Composite Body Inertias

For j > k., we have that
Cilj, k) = ;H@){ (6, K)F(R)R(k) — R(RVE(R))6" (i, )di- + 60, k) F(R)S(k, §) R(D)d<i | H* (7)

— [0, DIFG)RG) ~ RO (5, )55 + 60, VS, K)R(FSrsic | H*(k)}
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Proof: From Eq. 5.53 and Lemma 5.3 it follows that
2Ci(j.k) = H(j) |90, k) H(K)R(k) — R(JE(R)]6" (5, k)dj.551 + 00 HYE(R)G(k, i) R()isne
— R)6" (k, j)E(R)" (i, )< | H(0)
+ H (k) [0k, )G R(G) — RGBS (1550555 + 60k, jVH()6 G, D R()ic <
— R()®" (3, kYH()6" (i, /)<y <i| H*(0)
— H(k)[6(k, DH)R() — ROEO]S" (G, 1)0k.55: + 0k, VH@) (G, ) RG) i
— R(K)6" (i, k)H(0) 0" (7, )on<ic; | H ()
For j > k, i, we have that
2C(j. k) = H() [0 k)E(R)R(k) — ROEYE(K)]6" (i, £)0,51 + 6, K)EL(K) 6k, §) R(i)ic | HL (1)
— H(k) [0 (k. 1) [EHG)R() = ROEO]6" (,1)50, 55 — RS (i, k()6 (G, 0)dn<ic; | H ()
For j > k > i, we have that

2C;(5, k) = H ()0, k)H(K)p(k, i) R(1) H™ (i) — H (k)¢(k, 1) [H(2) R(i) — R(i)H(4)]¢" (4, 4) H" (5)

|
Lemma 5.5 Alternative expression for the Christoffel symbols
Define)(a, b, c) as
1 " * *
Y(a,b,c) = iHﬂ(a) [ — Q[Ri(c)H1"(c)] + Hy(c)Ry(c) + Ry(c)Hj (c) | Hy* (b) (5.54)
Then, an alternative expression for the Christoffel symboils is as follows:
=V(k,j,1) forj>k>i
oon ) Y, 5k) forj>i>k
Cil.k) = V(i,i, k) forj=i>k (5.55)
Y(i,j, k) fori>j>k
V(i k,7) fori>k>j
Proof: This result is obtained by combining the expressions in Section 5.2 with Lemma 5.4. [ |

6 Concluding Remarks

We have covered a range of topics all within the overarching goal of developing various expressions for the mass matrix
sensitivity coefficients, with respect to arbitrarily specified joint angle changes. Spatial operators make possible the sys-

tematic development of these quantities. The Newton-Euler spatial operator factorization of the mass matrix is used as a
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starting point to derive the mass matrix sensitivity equations. Alternatively, the composite-body mass matrix is then used
to derive alternative equations that are relatively simpler to evaluate. The sensitivity computations are then used to evaluate
the velocity dependent Christoffel symbols in Lagrange’s equations of motion. To our knowledge, this is the first time that
this type of term has been computed explicitly, using only spatial recursions and without the need for symbolic or numerical
differentiation. The paper focused only on the mass matrix and its related sensitivity. We have developed similar results for

the mass matrix inverse and its sensitivity, and these results will be described in a separate publication.
Acknowledgments

The research described in this paper was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technol-

ogy, under contract with the National Aeronautics and Space Administration.

References

[Balakrishnan 77]  A. V. Balakrishnampplied Functional AnalysisSpringer-Verlag, 1977.

[Bestle 92a] D. Bestle and P. Eberhard. Analyzing and Optimizing Multibody Systetashanics of Structures
and Machines20(1):67-92, 1992.

[Bestle 92b] D. Bestle and H. Seybold. Sensitivity Analysis of Constrained Multibody Systenméve of Applied
Mechanics62:181-190, 1992.

[Biesiadecki 96] J. Biesiadecki and A. Jain. A Reconfigurable Testbed Environment for Spacecraft Autonomy. In
Simulators for European Space Programmes, 4th WorksRoprdwijk, The Netherlands, October

1996. ESTEC.

[Bryson 63] A.E. Bryson, Jr. and M. Frazier. Smoothing for Linear and Nonlinear Dynamic SystePscked-
ings of the Optimum Systems Synthesis Conference, U.S. Air Force Tech. Rept. ASD-TDR-63-119
February 1963.

[Chang 85] C.0. Chang and P.E. Nikravesh. Optimal design of mechanical systems with constraint violation
stabilization method.J. of Mechanisms, Transmissions, and Automation in DediQm:493—-498,

December 1985.

[Eberhard 96] P. Eberhard. Adjoint variable method for sensitivity analysis of multibody systems interpreted as a
continuous hybrid form of automatic differentiatioBomputational Differentiationpages 319-328,

1996.

19



[Featherstone 83]

[Haug 84]

[Hsu 01]

[Jain 91]

[Jain 92a]

[Jain 92b]

[Jain 93a]

[Jain 93b]

[Jain 93c]

[Jain 95]

[Jain 99]

[Jain 00]

R. Featherstone. The Calculation of Robot Dynamics using Articulated-Body Ifiéntidsterna-
tional Journal of Robotics Researc®(1):13-30, Spring 1983.

E.J. Haug, R.A. Wehage, and N.K. Mani. Design sensitivity analysis of large-scale constrained dy-

namic systemsTransactions of the ASMBE06:156-162, December 1984.

Y. Hsu and K.S. Anderson. Low operational order analytic sensitivity analysis for tree-type muti-
body dynamics systemsournal of Guidance, Control and Dynamj@4(6):1133-1143, November—
December 2001.

A. Jain. Unified Formulation of Dynamics for Serial Rigid Multibody Systejnarnal of Guidance,
Control and Dynamicsl4(3):531-542, May—June 1991.

A. Jain and G. Man. Real-Time Simulation of the Cassini Spacecraft Using DARTS: Functional Ca-
pabilities and the Spatial Algebra Algorithm. Bth Annual Conference on Aerospace Computational

Control, August 1992.

A. Jain and G. Rodriguez. Recursive Flexible Multibody System Dynamics Using Spatial Operators.

Journal of Guidance, Control and Dynamjds(6):1453-1466, November 1992.

A. Jain and G. Rodriguez. An Analysis of the Kinematics and Dynamics of Underactuated Manipu-

lators. IEEE Transactions on Robotics and Automatig):411-422, August 1993.

A. Jain and G. Rodriguez. Linearization of Manipulator Dynamics Using Spatial OpertE&is.
Transactions on Systems, Man and Cyberngfi8§1):239-248, January 1993.

A. Jain, N. Vaidehi, and G. Rodriguez. A Fast Recursive Algorithm for Molecular Dynamics Simu-

lations. Journal of Computational Physic$06(2):258—-268, June 1993.

A. Jain and G. Rodriguez. Diagonalized Lagrangian Robot Dynal&ieE Transactions on Robotics

and Automation11(4):571-584, August 1995.

A. Jain and G. Rodriguez. Sensitivity Analysis for Multibody Systems Using Spatial Operators. at
SciCADE’99 (Fraser Island, Australia), August 1999.

A. Jain and G. Rodriguez. Computational Robot Dynamics Using Spatial OperattEE&Biinter-

national Conference on Robotics and Automati®an Francisco, April 2000.

20



[Kailath 70]

[Kailath 74]

[Kalman 60]

T. Kailath. The Innovations Approach to Detection and Estimation Thé&oceedings of the IEEE
58(5):680-695, March 1970.

T. Kailath. A View of Three Decades of Linear Filtering TheolffEE Transactions on Information

Theory IT-20:147-181, 1974.

R.E. Kalman. A New Approach to Linear Filtering and Prediction Probl&x8dJE Trans. J. Basic
Engr, D:33-45, March 1960.

[Kreutz-Delgado 92] K. Kreutz-Delgado, A. Jain, and G. Rodriguez. Recursive Formulation of Operational Space Control.

[Li 89]

[Luh 80]

[Murray 94]

[Rodriguez 87]

[Rodriguez 90]

[Rodriguez 91]

[Rodriguez 92a]

[Rodriguez 92b]

[Serban 98]

The International Journal of Robotics Researth(4):320-328, August 1992.

Z. Li. Planning and Control of Dextrous Robot HandhD thesis, University of California, Berkeley,

1989.

J.Y.S. Luh, M.W. Walker, and R.P.C. Paul. On-line Computational Scheme for Mechanical Manipu-
lators. ASME Journal of Dynamic Systems, Measurement, and Cph@8(2):69-76, June 1980.

R.M. Murray, Z. Li, and S.S. SastnA Mathematical Introduction to Robotic Manipulatiot€RC
Press, 1994.

G. Rodriguez. Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse Dynam-

ics. IEEE Journal of Robotics and Automatids(6):624-639, December 1987.

G. Rodriguez. Random Field Estimation Approach to Robot Dynat&EE Transactions on Sys-
tems, Man and Cybernetic20(5):1081-1093, September 1990.

G. Rodriguez, K. Kreutz-Delgado, and A. Jain. A Spatial Operator Algebra for Manipulator Modeling
and Control.The International Journal of Robotics Researtf(4):371-381, August 1991.

G. Rodriguez, A. Jain, and K. Kreutz-Delgado. Spatial Operator Algebra for Multibody System
Dynamics.Journal of the Astronautical Science®)(1):27-50, Jan.—March 1992.

G. Rodriguez and K. Kreutz-Delgado. Spatial Operator Factorization and Inversion of the Manipula-

tor Mass Matrix.IEEE Transactions on Robotics and Automafi8(i):65—76, February 1992.

R. Serban and E.J. Haug. Analytical derivatives for multibody system andlgsisanics of Struc-

tures and Machine26(2):145-173, 1998.

21



[Walker 82] M.W. Walker and D.E. Orin. Efficient Dynamic Computer Simulation of Robotic Mechan&8I¢E

Journal of Dynamic Systems, Measurement, and Cqritf2}(3):205-211, September 1982.

22



