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Abstract—This paper describes the multi-mission Dshell++ 

simulation framework for high fidelity, physics-based simulation 

of spacecraft, robotic manipulation and mobility systems. 

Dshell++ is a C++/Python library which uses modern script-

driven object-oriented techniques to allow component reuse and 

a dynamic run-time interface for complex, high-fidelity 

simulation of spacecraft and robotic systems. The goal of the 

Dshell++ architecture is to manage the inherent complexity of 

physics-based simulations while supporting component model 

reuse across missions. The framework provides several features 

that support a large degree of simulation configurability and 

usability. 

 
Index Terms—Aerospace simulation software 

I. INTRODUCTION 

RADITIONALLY, spacecraft simulations have been built as 
a monolithic program targeted to a specific mission 

application  [1]. Early simulators were developed using a 
procedural, non-object-oriented programming language 
optimized for mathematical computations such as FORTRAN 
 [1]. Adding or changing a feature, altering the internal data 
structures or even modifying the format of the input/output 
data usually required a deep understanding of the entire 
simulation  [2]. With the advent of personal computers and 
workstations, tools such as Matlab and Simulink  [3] gained 
popularity for building simulations. These tools introduced a 
visual, interactive interface but lack the capability to work 
well in embedded systems which required real-time 
performance.  

Dshell++ is a high fidelity, multi-mission, physics-based 
simulation toolkit with the goal of increasing simulation 
productivity by using modern object-oriented techniques to 
allow component reuse, a data-flow architecture, and a 
dynamic run-time interface for complex, high-fidelity 
spacecraft and robotics systems simulations.  

Object-Oriented Design 

Dshell++ is the next generation version of the Dshell 
spacecraft dynamics simulator  [4] completely redesigned and 
rewritten in C++. Dshell++ uses object-oriented techniques to 
allow code reuse and component building. Dshell++ 
simulations consist of a collection of component device 
models from model libraries assembled and connected 
together into a data flow to meet the required simulation 
behavior. For example, a thruster model is a C++ class 
derived from (and inherits all the properties of) an actuator 

C++ base class which models a device that applies a force on 
a body. Dshell++ provides facilities for the inter-connection 
and efficient data exchange between such models. Related 
models within sub-systems (for example, a bank of thrusters) 
can be grouped together into an "assembly" which in turn can 
be part of a larger assembly. The assemblies are reusable and 
can be used across more than one simulation. This allows 
complex simulations to be built by simply choosing and 
connecting the desired components together. 

 

Python Interface 

While simulators  [5] have been built around C++ and 
object-oriented techniques, Dshell++ wraps a Python  [6] 
interface around the C++ classes so simulation setup and 
control can be completely script-driven. Selecting which 
models to include, specifying the data-flow connections and 
initializing the states and parameters are entirely specified 
through Python scripts that are processed at run-time. If a 
new, improved model becomes available, incorporating the 
new model is straightforward: simply swap out the old model 
with the new one in the Python scripts with no recompilation 
required. Users can access and even extend the simulation 
functions and C++ classes at run-time entirely in Python 
without modifying the C++ classes. Python provides all of the 
extensive features of a modern software language as well as 
additional ones including parsers, run-time loading of 
extensions, and a large collection of open source Python 
modules that are available to the simulation developers and 
users. Special functions, called “watch handlers” which are 
written in Python, can be created to trigger on events and 
monitor or plot data to the screen. Visualization in real-time 
(such as watching a rover slipping down a slope) is possible 
through the Dspace 3D toolkit  [21]. Interfaces to external 
applications (such as Matlab) can be built entirely through the 
use of Python scripts. 

 
Real-Time Performance Across Mission Domains 

Dshell++ includes the multi-mission high-performance 
DARTS  [13] flexible multibody dynamics module based on 
the Spatial Operator Algebra framework  [8] for solving the 
dynamics of multi-body dynamics. Dshell++ has been used to 
develop real-time simulations for cruise/orbiter vehicles as 
well as to develop domain specific simulators such as 
ROAMS for surface rover simulations  [9] and DSENDS  [10] 
for entry, descent and landing simulations. These simulators 
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have been in use by a number of successful NASA missions 
(Mars Science Laboratory, Phoenix) as well as technology 
development activities (Athlete  [11] and the Lunar Surface 
Operations Simulator  [12]). 
 

Portability 

Dshell++ is portable. The underlying framework is written 
in standard C++ and is highly optimized to run in real-time 
on laptops, desktop workstations and supercomputers. 

II. ARCHITECTURE 

The key design requirements on Dshell++ are: reusability 
across mission domains, a modular design to reduce 
maintenance costs by simplifying updates and improvements, 
real-time performance and an interface which allows users to 
manage and customize complex simulations. We describe 
here the salient features of the Dshell++ architecture’s that 
have been designed to meet these challenges. 

A. Multi-domain Simulations 

Physics-based simulations developed using Dshell++ are 
used extensively by space missions. Dshell++ based 
simulations have been used on workstations, in hardware-in-
the-loop real-time simulations for space mission simulators 
for orbiter/cruise spacecraft, planetary surface rovers  [12], 
entry-descent-landing simulators  [10] and airship simulations 
(Fig. 1). Such simulations can include space environment 
models that are difficult if not impossible to create such as 
zero-g and planetary surface terrains. Such simulations are 
also used to explore a breadth of mission scenarios that would 
be too expensive or time-consuming to evaluate in physical 
simulators. Thus the family of simulations can vary widely 
across mission testbeds and from mission to mission. 

 
Beyond diversity, the other challenges spacecraft 

simulators face are the stringent high-fidelity requirements 
and the demanding faster than real-time performance 
required for use in real-time, closed-loop, hardware-in-the-
loop testbeds.  

B. Reusability 

To reduce the cost of simulator development, the Dshell++ 
architectural approach has been to design reusable component 
models as building blocks to develop simulations. The 
component models are organized as libraries which can be 
assembled to develop a variety of simulations. This approach 
permits a significant degree of reuse of models across 
simulations, as well as the ability to jump-start new 
simulators using models generated for other testbeds and by 
previous missions. The model reuse facilitates the continuing 
evolution, and maturation of the component models – a 
benefit that does not accrue with monolithic simulators. 

C. Modular Design 

As mentioned earlier, reusability across multi-domain 
simulations is a driver for component model-based simulation 
design. Complexity management is an equally important 
motivator for the modular architecture since hundreds to 
thousands of parameters and states are present in spacecraft 
simulators of even moderate complexity. Modularity brings 
with it the important benefit of encapsulation, information 
hiding and well defined interfaces across functional 
boundaries. Information hiding allows one to isolate 
functional blocks from each other and permit interactions 
only through clearly defined interfaces. It allows users to 
decouple and localize functionality within the simulation to 
facilitate testing, debugging, refactoring and evolution of 
simulations.  

D. Data Flow 

A data-flow architecture is used for simulation execution 
and component model interconnections and communications. 
Facilities are available to allow the exchange of typed data 
between models without inducing coupling between the 
details of individual model implementations. For example the 
output from a model generating information about the attitude 
and rate of a node can be distributed to other models needing 
this data through connector signals without exposing details 
on how the data are generated by the model (Fig. 2). 

E. Model Organization 

Beyond the data-flow modularity, component models are 
based on an object-oriented design where model classes can 
be organized into hierarchies involving related models, e.g. 
families of gravity models, thruster actuator models (Fig. 3). 

Each Dshell++ model has a standard interface for 
parameter and state data as well as for flow inputs and 
outputs which can be customized for each specific model. 

 
Fig. 1  Dshell++ has been used to create physics-based simulations for a broad range of mission domains. 
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Model states can include both discrete and continuous states. 
A model interface file declares these externally visible 
characteristics for each model. Auto-code generators based on 
the Cheetah templating tool  [16] were written to read these 
interface files and generate C++ model code. 

The system's DARTS  [13] multibody dynamics module is a 
key backbone layer supporting all the component models. The 
DARTS module is responsible for propagating the dynamics 
state of the system (e.g. spacecraft attitude and velocities, 
momentum, mobility slippage, vibration modes) using 
numerical integrators. The multibody dynamics states can be 
highly non-linear and coupled, and even though the physical 
assets (e.g. vehicles) may be distinct, their interactions must 
be handled together for the proper solution to the system's 
dynamics. As a consequence, the dynamics module is 
implemented as a unified model that includes contributions 
from all multibody components in the system. However, we 
have been careful to make sure this coupling does not 
adversely impact the overall modularity of the system. 
Towards this, component models have been designed to have 
a restricted interface to the multibody model to avoid 
unnecessary interactions and coupling among the component 
models. 

F. Real-time Performance 

Dshell++ simulators are used in real-time, hardware-in-
the-loop, closed-loop simulations. High-performance speed is 
essential for such embedded use in time-critical testbeds. 
Toward this end, Dshell++ is designed to minimize 
unnecessary overhead that can impact performance. One 
potential area affecting performance is the need to exchange 
data among the several component models that constitute the 
simulation. Dshell++ provides a special connector facility 
called signals which allows the sharing of memory slots 
across models. Model outputs write to these shared memory 
slots while model inputs read from them. Thus there is no 
packetizing overhead from such data exchange.  

 

 
Many of the component models have to interact with the 

DARTS multibody dynamics  [13] library which computes the 
kinematics and dynamics state of the space vehicle. The 
Dshell++ models have explicit interfaces to the relevant 
nodes and hinges in the DARTS model that allow them to 
make direct function calls to get/set the needed data 
efficiently.  

The multibody dynamics module often dominates the 
computational cost for physics-based simulations. To address 
this, Dshell++ makes use of the DARTS dynamics engine 
(Fig. 4) that implements the fast Spatial Operator Algebra  [8] 
based dynamics algorithms. The computational complexity of 
these algorithms is just linear in the number of degrees of 
freedom in the system. Moreover, DARTS allows the 
modeling of the dynamics of both rigid and flexible bodies 
with full implementation of the non-linear rigid-flex coupling 
to support very high-fidelity modeling with the most efficient 
algorithms available. DARTS' high-speed algorithms provide 
sufficient performance to typically allow the simulations to be 
used in mission testbeds without compromising performance 
speed or fidelity. 

 

 

 
Fig. 3  Component models are based on an object-oriented design where model 
classes are organized into class hierarchies. 

 
 
Fig.2  Data flow between models. In Dshell++, a model has user-defined input

and output ports. Data is shared between models by tying a model’s input port 
to another model’s output port through a signal (basically a shared memory 
buffer).  Users can peek or poke the signal data through the Dvar interface. 

Fig. 4  The DARTS C++ library solves equations of motion for flexible 
multibody systems based on the dynamics properties of the bodies and the forces 
applied to those bodies. 
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G. Simulation Management 

Simulator complexity is a natural byproduct of the large 
number of models involved in assembling typical spacecraft 
simulations. One of the goals of the Dshell++ architecture is 
to help manage this complexity. The approach is to build in 
checks that verify the consistency and correctness of the 
configured models in the assembled simulator. For instance, 
Dshell++ includes methods to verify that all model inputs and 
outputs are properly connected with matching types, which 
helps to reduce user errors. 

Changes to the simulator configuration require explicit 
"unlocking" and "locking" of the system. When the system is 
“locked,” any change to the topology of the simulation will be 
reported as an error. This ensures that simulation 
configuration changes cannot be made inadvertently and that 
appropriate checks and updates are made after the 
simulation's configuration has been changed. Examples of 
simulation configuration changes include the addition and 
deletion of models, multibody system bodies and nodes etc.  

Services such as data logging, check pointing, data peeking 
and poking require the ability to interact with the disparate 
models to access the data specific to each model. While 
individual models provide APIs that allow users to interact 
with their internal data, the Dshell++ simulation architecture 
provides additional methods to access the overall data across 
all the models in the simulation.  

While models can have discrete and continuous states, the 
latter require special handling since they are often coupled 
with the multibody system's dynamics state. The continuous 
states are propagated by numerical integrators such as 
CVODE  [22]. Since numerical integrators typically work 
with contiguous memory blocks for states and state 
derivatives, Dshell++ takes care of mapping the individual 
model continuous state memory pools into contiguous 
memory blocks for interfacing with integrators. This 
bookkeeping is transparent to users and facilitates the use of 
different types of numerical integrators within the simulation.  

Due to the data-flow architecture, it is important that the 
calling order sequence for the models is in accordance with 
their connectivity, i.e. models whose outputs are connected to 
the input of another model should be called before the 
dependent model. Since manually ensuring this requirement 
can be difficult and error prone once the number of models 
and interconnects exceeds even a small number, the Dshell++ 
architecture provides model order sorting facilities that 
process the model connectivity information to automatically 
determine the proper calling sequence for the models. Often 
times, the model inter-connectivity may result in connection 
loops among the models. Dshell++ provides methods to 
identify such loops and allow the user to define "breaks" in 
the loops to assist the sorting process. Dshell++ also allows a 
user to add extra dependencies into the sorting process over 
and above those implied by the model inter-connections. The 
model sorting process allows users to fairly easily build up 

simulations with hundreds of inter-connected models while 
enforcing the correct model calling order necessary for the 
correct execution of the simulation. 

The modular implementation and encapsulation of the 
complex multibody dynamics model described above also 
goes a long way towards reducing the apparent complexity of 
the simulation by minimizing the coupling among the 
component models and layers. 

H. Python Interface 

While the Dshell++ library is written in C++, an extensive 
Python  [6] scripting layer interface is also provided to its C++ 
classes and methods. The purpose of the Python interface is to 
allow the user to initialize and configure the simulation 
through a convenient scripting layer. The Python interface 
provides access to virtually all of the C++ methods in the 
Dshell++ classes. Indeed, the user has the option of setting up 
and configuring the full simulation in C++ or to do so 
entirely using Python commands (Fig. 5). A benefit of Python 
is the vast collection of open-source Python extension 
modules, e.g. socket programming, XML-RPC, and graphic 
widgets etc. can be easily used to extend the simulation 
capability in powerful ways. 

 
The low-level Dshell++ classes are all written in C++ for 

speed and execution efficiency. To generate the Python 
interface, we use SWIG (A Simplified Wrapper and Interface 
Generator)  [15]. SWIG has the ability to generate a Python 
interface given only the C++ header (.h) files. The output 
from SWIG is a C++ file which is linked with the Dshell++ 
C++ libraries . Since SWIG only requires the declarations of 
C or C++ functions and classes and not the source code, 
SWIG can be used to generate the Python interfaces for third 
party libraries whose source code may be unavailable. With 
SWIG, a C++ program which calls Dshell++ can be rewritten 
entirely in Python. Users will only need to be familiar with 
Python to use Dshell++. 

I. Graphical User Interface 

While Python provides a command line interface for 
accessing simulation variables, it also forms the basis for 
auto-generating GUI panels to provide a more graphical and 
user-friendly interface for the simulation data. Dshell++ uses 
the GTK  [17] widget family and its PyGTK Python binding 
 [18] to build these graphical user interface panels at run-time 
(Fig. 6). These panels are tailored to the specific content of 

 
from Dshell.Dshell import DshellX 
from Dutils import Dvar_Py 
DshellObj = DshellX(); # create Dshell object 
execfile(‘model.py’); # load models 
# Use Dvar to access the battery level parameter 
batteryLevel = 
  Dvar_Py.getDvar(‘.Spacecraft.DefaultSC.signals.batteryPowerLevel’) 
print batteryLevel();  # display the battery level at time t=0 
DshellObj.step(10); # advance simulation by 10 seconds 
print batteryLevel();# display the battery level at time t=10 
 
Fig. 5  Sample Python script to run a Dshell++ simulation. 
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the simulations being run. This is another example where 
generic features that adapt to the specific simulation model 
save the users the large cost and effort – and in this case the 
effort of building graphical user interfaces for their 
simulations. Additional support is available for creating strip 
chart panels to display the time histories of user-selected 
variables. These displays can be used to visualize the relative 
timing and values of variables as the simulation proceeds. 

J. Debugging 

The Python interface also provides powerful run-time 
methods to allow users to debug and tune simulations, such as 
the ability to activate and deactivate models while the 
simulation is running. This feature can be very useful for 
isolating problematic behavior in complex simulations 
involving tens or hundred of models. Another useful feature 
is the support for controlling multiple verbosity levels of 
debug messages. The verbosity of messages can be set to 
different threshold levels to filter debugging messages, 
warnings and errors. Moreover the fact that these settings can 
be set individually for models allows limiting of messages to 
just the relevant models and avoiding the torrent of messages 
that might otherwise be generated across the whole 
simulation. The built-in support for message sources and 
sinks allows the user to print messages directly to the screen, 
log to memory or to the file system for post processing. 
Another important issue in complex simulations is that of 
identifying and improving bottleneck models in a simulation. 
The Python date/time methods can be used for model 
profiling to collect the execution times of individual methods 
at the model level. This feature can be exercised interactively 
to identify areas of the simulation requiring additional tuning 
in order to improve simulation performance. 

III. SIMULATION DEVELOPMENT 

A. Generating C++ Component Model Classes 

To simplify building the C++ software for a component 

model, Dshell++ uses Python scripts to auto-generate the C++ 
class code for such new Dshell++ models. While the 
Dshell++ model base classes provide extensive functionality, 
additional methods are required to define the specific states, 
parameters and attributes of individual models. Much of this 
boiler-plate code comes from auto-code generation (Fig. 7).  

Dshell++ uses the Python ConfigObj module  [20] to parse 
Dshell++ model description (.mdl) files which describe the 
specific interfaces for a model (Fig. 8). The ConfigObj 
module provides classes to parse such data files. The 
extracted contents are used to auto-generate C++ code using 
the Cheetah  [16] template-based code generator tool. The 
generated C++ code for the Dshell++ model contains stubs 
for the required methods for the model which the user can fill 
in with the model-specific functionality. Thus, the 
development of a new Dshell++ model reduces to one of 
creating the model interface definition file, running auto-code 
generator and then simply adding in a relatively small 
amount of model specific code. The auto-generated classes 
and code provide extensive functionality tailored to the model 
from which the user is freed the burden of writing. The auto-
generation process is able to seamlessly handle changes to the 
model description files and merge in the auto-code updates 
with existing user defined code. 

B. Assemblies 

Since a simulation may contain hundreds of models, 
organizing the models can be a complex task. To address this 
issue Dshell++ implements an Assembly C++ class to build 
the sub-systems (Fig. 9). Assembly objects are containers and 
can contain models and even other assemblies. There can be 
multiple instances of an Assembly class. For example, you 
can instantiate four Wheel Assembly objects to represent the 
wheels of a four-wheeled rover. Assemblies simplify 
simulator design by allowing models and the complex 
interconnections to be grouped as a single package. The 
designer is then left with interconnecting assemblies together 
instead of delving in the details of the individual models. 

 
 
Fig. 7  Steps in building a Dshell++ model.  You first create a model “.mdl” 
text file which describes the model’s parameters, inputs and outputs. The 
DshellAutoGen (a python script based on the Cheetah templating tool) is used 
to create C++ .cc and .h skeleton code. You then edit the C++ files to add 
functionality to the model. The SWIG  [15] tool is used to autogenerate a 
Python interface to the model. Finally, the C++ files are compiled to build a 
shared library (.so) file which can be imported in a Python script or linked to a 
C++ program. 

 
Fig. 6  The Dshell++ graphical user interface is built around the GTK and 
PyGTK graphics libraries and the Python scripting language. 
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C. Configuration Files 

Dshell++’s initial parameters are specified through Python 
scripts. The built-in support for object-oriented classes in 
Python supports rapid-prototyping and evaluation of new 
concepts directly in Python before migrating performance-
critical ones to C++ eventually. An example of this is the use 
of Python extension methods in Dshell++ to process 
configuration files with model information to instantiate and 
build up the full simulation model. This process is much 
simpler than the alternative procedural process for setting up 
models. Moreover, the model configuration files are in 
Python syntax and are hence able to take full advantage of the 
Python interpreter's built in parser and its sophisticated error 
checking. The Dshell++ configuration files effortlessly 
support advanced features such as Python expressions, 
conditionals and even procedures, for example: 

 
‘SchackeltonCrater’: { 
  ‘Latitude’: -1.5533, #radians 
  ‘Longitude’: 3.7175, #radians 
  ‘Body’: ‘Moon’, 
  ‘SoilType’: ‘Compact_Sand’} 

 
The advantage of using Python scripts is that parameters 

can be computed dynamically at run-time. For example, to 
specify the latitude/longitude in degrees instead of radians: 

 
import math; 
‘SchackeltonCrater’: { 
  ‘Latitude’: math.radians(-89.0), 
  ‘Longitude’: math.radians(213.0), 
.  ‘Body’: ‘Moon’, 
 ‘SoilType’: ‘Compact_Sand’} 

D. Signals 

Dshell++ provides C++ base classes for hardware device 
models. These models share data through “signals” (Fig. 2). 

A model writes its output to one or more signals and reads 
input from signals. A signal is essentially a C++ array in 
memory. When a model writes to a signal, it writes to this 
memory location where it is available for another model to 
read. This shared memory paradigm allows a model to be 
designed with no C++ dependencies on other models. Model 
inputs and outputs are simple C++ pointers to the signal so 
changing the source code of a model does not require 
recompiling other models. 

E. Dvar Interface 

Several factors that go beyond model correctness and 
performance are critical to the usability and scalability of 
simulation architectures. The complexity of debugging, 
testing and validating of simulations grows exponentially as 
the number of component simulation models and their 
interconnections grow. As a consequence, the sustainable use 
of a simulation architecture for modest to large-size 
simulations depends critically on the level of built-in features 
that allow analysts and users to manage the growing 
complexity. Thus, Dshell++ includes several simulation 
features and services designed to meet these needs.  

Since even modest scale simulations can involve thousands 
of variables, one of the pressing usability needs is to provide 
analysts with a way to peek and poke at simulation variables 
at run-time. Dshell++ includes a very flexible framework-
level layer, called Dvar (Dshell variables), to support 
querying and modifying virtually all simulation variables 
interactively at run-time. Dshell++ implements Dvar C++ 
classes to represent the basic C types (float, short, bool, 
double, int, long, enums), strings and arrays. Simulation 
variables, such as those associated with component model 
inputs/outputs, parameters/states, or with multibody model 
states are organized into a Dvar namespace hierarchy. This 
hierarchy forms the basis of an addressing scheme which 
assigns to every variable a unique path-like string address in 
the Dvar variable space. Dvar's C++ or the Python interface 
can be used to locate and work with any variable in the 
simulation at run-time. In this approach, a user has unlimited 

 
 
Fig. 9  A Rover Assembly Diagram. Related models within subsystems (e.g. a 
wheel motor, and surface contact model) can be grouped into a “wheel 
assembly.” Assemblies are reusable and can be used in more than one 
simulation. This allows complex simulations to be built by choosing and 
connecting the desired assemblies together.  

 
Fig. 8  Example of a model specification (.mdl) file. The user creates an .mdl 
file (a text file) to describe a model’s inputs and outputs. For this example, the 
model simulates a hardware Gyroscope which has two inputs: the angular 
velocity (omega) and angular acceleration (accel). The output is an array of 
three integers which hold the gyro counts. 
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access to variables and is not constrained to a pre-defined set 
of variables. This is very powerful feature for debugging and 
test sessions where even the finest grain details can be 
monitored for debugging purposes.  

Here’s a C++ example of how Dvar works: 
 

static double mass;  // this is the variable we want to register 
Dvar::create(“mass”, &mass); // registers “mass”  
//You can now access the variable through Dvar C++ methods 
DvarDouble *p = Dvar::getDvarDouble(“mass”); 
p->value(10.2); // sets mass = 10.2 

 
The C++ variables can also be accessed in Python scripts 

through Dvar: 
 
# Python code 
import Dvar_Py; 
Dvar_Py.getDvar(‘mass’)(10.2);  #  will set the C++ mass to 10.2 

 
Conversely, one can create Dvar objects in Python to wrap 

Python objects and access those Python objects through C++ 
code. 

Dvar objects can be also organized into a tree-like nested 
structure where a Dvar object can contain other Dvar objects. 
Here’s a sample Dvar Python code to change the efficiency 
parameter of a solar panel model attached to a space vehicle 
named “Rover”: 

 
import Dvar_Py; 
Dvar_Py.getDvar( 
     ‘.Spacecraft.Rover.models.SolarPanel.params.Efficiency’)(0.90); 

 

F. Check Pointing 

Since a Dvar tree can be saved to and read back from a file; 
Dshell++ uses the Dvar interface to check point and resume 
simulations. The check point function stores the full 
simulation state to the file system. The simulation state can be 
restored from such check point files. This allows users to 
restart simulations from arbitrary points in long simulation 
runs.  

G. Events and Watch functions 

The Dvar interface also supports a "watch" feature that 
allows a user to register callback functions for selected Dvar 
variables. The callbacks, which are functions written in either 
Python or C++, are triggered any time the associated 
variable's value changes. This allows the user to monitor 
variables and trigger events only when something interesting 
happens. Using Python scripts as the event and watch 
handlers instead of C++ functions has the advantage of 
allowing users to add or modify the handlers without the need 
for recompiling the source code. 

One of the key users of this feature is Dshell++'s interface 
to its 3D graphics module called Dspace  [21]. Watch handlers 
are attached to the Dvar simulation variables associated with 
the position and attitude variables for physical bodies in the 
simulation. When their values change, the handlers are 

triggered and send messages to Dspace to update the position 
and location of the graphics objects in the scene to keep them 
in sync with the simulation. Other uses of the watch feature 
are for updating displays and data logging. 

While watch variables are tied to Dvar variables, a separate 
"events" module allows users to register callbacks that are 
automatically invoked as the simulation time advances. The 
rate of invocation can be set to be periodic with a user defined 
frequency or can be configured to be triggered after a 
specified delay. 

H. Data Flow Visual Displays 

The Graphviz  [19] open-source library is used for auto-
generated visual displays of the Dshell++ model data-flows  
and their interconnections (Fig. 10). Since these displays can 
become very dense, Dshell++ allows the user to interactively 
center the displays around any model and control the 
"neighborhood" of models to be displayed. Such displays can 
be used to verify that the models are interconnected properly 
as well as to document the simulation design. 

 

 

IV. APPLICATIONS 

Dshell++ based simulations have been used on 
workstations, in hardware-in-the-loop real-time simulations 
for space mission simulators for orbiter/cruise spacecraft, 
planetary surface rovers, entry-descent-landing simulators 
and airship simulations. Some examples are presented below. 

A. Surface Rover Vehicles 

Dshell++ has been used to build the ROAMS  [9] physics-
based, high fidelity simulator for planetary surface 
exploration rover vehicles. Rover components such as a stereo 
camera, navigation sensors and motor control are all modeled 
using Dshell++. 

B. Entry, Descent and Landing 

EDL simulations for the Mars Phoenix Mars Lander  [14] 
are performed using the Dshell++-based Dsends  [10] 
simulator for maneuver targeting, landing dispersion analysis 
and safety assessment. The simulation implements a 6-DOF 

 
Fig. 10  A signal flow graph displaying the connections between models. 
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model of the entry trajectory, parachute deploy and lander 
descent to the surface of Mars. 

C. Manned Lunar Operations 

The Lunar Surface Operations Simulator  [12] has been 
developed with Dshell++ to support planning and design of 
future manned missions to the moon. Various lunar rovers, 
habitats, dynamic and physical processes, and environment 
systems are being modeled and simulated. 

V. CONCLUSION 

Dshell++ makes full use of object-oriented techniques to 
allow code reuse and component building to minimize 
development and maintenance costs. Performance-sensitive 
code is written entirely in C++ and a Python scripting 
interface is used for the simulation configuration and user 
interaction. Python's object-oriented paradigm provides an 
excellent match to the Dshell++ architecture and reduces new 
development costs by allowing Dshell++ simulations to 
interface with the huge number of off-the-shelf Python 
libraries. 

Future plans include adding a multi-rate scheduler to 
support models which require high sampling rates, the ability 
to run each model in a separate thread, and efficient data 
loggers to capture results to a database. 
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