
Large Terrain Modeling and Visualization for Planets

Steven Myint, Abhinandan Jain, Jonathan Cameron, Christopher Lim

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, CA
Steven.Myint@jpl.nasa.gov

Abstract—Physics-based simulations are actively used in the
design, testing, and operations phases of surface and near-
surface planetary space missions. One of the challenges in real-
time simulations is the ability to handle large multi-resolution
terrain data sets within models as well as for visualization.
In this paper, we describe special techniques that we have
developed for visualization, paging, and data storage for dealing
with these large data sets. The visualization technique uses
a real-time GPU-based continuous level-of-detail technique
that delivers multiple frames a second performance even for
planetary scale terrain model sizes.

Figure 1: A Mars data set displayed using a continuous level

of detail technique. The mesh grid overlaid on the planet,

shows the underlying levels of detail.

I. INTRODUCTION

NASA’s surface and near-surface planetary exploration

missions involve landers and surface exploration rovers.

These missions require the development and use of closed-

loop simulations for the space platforms and the planetary

environments. These simulations can involve entry, descent,

landing (EDL) [1] and rover traverses over rough terrain

scenarios [2]. The simulations are used for, among other

things, landing site selection, science planning, and outreach.

To model the motion of a rover over a terrain surface,

a geometric representation of the surface is essential. We

use the SimScape [3] software to handle terrain models of

planetary surfaces. We use the Dspace [4] software to visual-

ize the planetary surfaces. While these capabilities provided

a highly flexible and capable layer for moderately sized

simulation needs, they are inadequate for many planetary-

simulations involving large terrain models. For instance,

a 10 cm resolution terrain over a 10 km square region

is approximately 80 GB in size. Planetary scale data is

significantly larger and impractical for the memory/storage

resources of most computing platforms.

In this paper, we describe techniques for the real-time

modeling and visualization of planetary simulations involv-

ing very large terrains. We describe techniques that do

not require any special purpose hardware, and are scalable

to support data at multiple resolution scales and different

extents. We describe how planetary data can be handled

seamlessly together with Cartesian digital elevation map

(DEM) segments within the same simulation. And we then

go on to describe how we efficiently visualize these large

terrains using the GPU. We also show how we can overlay

additional data onto the terrain visualization.

Section II begins with an overview of the SimScape

terrain-modeling library. This is followed by Section III,

which describes the SimScape extensions for handling large

terrains. Lastly, Section IV explains how we visualize large

terrains using a real-time continuous level of detail tech-

nique.

II. SIMSCAPE TERRAIN MODELING

The terrain modeling capabilities are built upon the Sim-

Scape library, which is briefly described in this section.

A. SimScape Background

With SimScape, we can model surfaces as a DEM, a

planet, or an arbitrary mesh. SimScape provides an API

to access the data and to transform the data between the

various terrain representations. SimScape can import data

from standard terrain data formats such as PDS [5], ISIS

[6], and GeoTiff [7]. SimScape saves its data into “stores”

using the HDF5 format [8]. HDF5 is a file format (along

with supporting libraries) that allows large amounts of data

to be saved on a file system in a manner so that data slices

can be retrieved efficiently independent of the large size of

the data sets.

For the applications considered in this paper, there are two

types of terrain representations that are relevant: TopoDem

(digital elevation map) and TopoPlanet (planetary surface).

2011 Space Mission Challenges for Information Technology

978-0-7695-4446-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SMC-IT.2011.11

177

2011 Fourth IEEE International Conference on Space Mission Challenges for Information Technology

978-0-7695-4446-5/11 $26.00 © 2011 IEEE

DOI 10.1109/SMC-IT.2011.11

177

1) Digital Elevation Maps (DEMs): When a vehicle

explores a relatively small area, it is possible to represent

the terrain surface as a DEM, which is a regular rectangular

grid of height data. DEM representations are limited to

models with only one height value at any row/column grid

point in the DEM. This does not allow multiple height

values at a single location, which might occur if the terrain

includes overhangs. A DEM is sometimes called a 2.5-

D surface, meaning that it is not a full 3D surface such

as a sphere or ellipsoid (which would require an arbitrary

mesh for adequate representation), but is more than a 2-D

representation, such as an image. The advantage of using a

DEM is that height access is essentially a matrix look-up

involving very simple index arithmetic. So accessing height

data with a DEM is very fast. On the other hand, looking

up height data with a more general mesh is much slower.

Each TopoDem is stored in the HDF5 store along with

other configuration data including the physical bounds of

the TopoDem, the grid spacing, where the TopoDem is on

the surface of the planet, and other related configuration

information.

2) Planets: A TopoDem (DEM) is essentially a regular

grid of data in a Cartesian setting suitable for representing

moderate sized areas. For larger areas, the curvature of

the planet becomes a significant issue and Cartesian DEMs

cannot be used directly. However, a planetary surface can

be modeled with a regular latitude/longitude grid of height

data. The TopoPlanet class in SimScape is used for this and

uses a grid of height data interpreted in a polar coordinate

system. TopoPlanets are also 2.5-D surfaces since any spe-

cific latitude/longitude combination can only represent one

height.

Both TopoDem and TopoPlanet are derived from a To-

poGrid, which handles the representation of gridded data, in-

terpolation, storage, and retrieval. A TopoDem interprets its

gridded data as a regular Cartesian grid while a TopoPlanet

interprets its gridded data in a polar coordinate system.

TopoPlanets have additional methods for dealing with plan-

etocentric and planetodetic planet surface models.

III. LARGE TERRAIN MODELING

In working with large terrain data, our goal has been to

set up the full terrain data sets (even full planetary scale)

in SimScape once, and be able to use them in real-time

simulations at any locale on the data set without additional

pre-processing. The following sections highlight the key

capabilities developed to meet these goals.

A. Paging

The terrain DEM data is saved to an HDF5 file as an array

of floating-point values. Since the data can occupy gigabytes

of memory, the DEM data is not loaded entirely in memory

and a lazy loading algorithm is used to efficiently load only

regions of the DEM data.

1) Lazy Loading: When a DEM data point needs to be

read, the lazy loader uses the HDF5 built-in “hyperslab”

functions to read only a tiny subset (“patch”) of the DEM

that contains the needed point from the HDF5 file. As an

example, a wheeled rover requires only the terrain data in

the immediate vicinity of the wheels for use in wheel-soil

contact models. Instead of loading the entire DEM, only a

patch directly underneath the wheels is loaded. This can be

seen in Figure 2, where the highlighted window under the

rover is loaded.

Figure 2: Only a subset of the terrain underneath the rover,

highlighted in white here, is loaded from disk when a rover

is simulated on the terrain.

2) Caching: As the rover or lander moves, new patches

that represent the terrain underneath the vehicle need to

be loaded. To increase performance, the patches are saved

(cached) in a memory buffer to minimize the need to reload

the same patch from the HDF5 file over and over again.

The user at run-time specifies the size of the cache. When a

DEM point needs to be loaded, the lazy loader first checks

if the point exists in the cache. If the point is found in the

cache, the lazy loader simply returns the memory address of

the patch in the cache that contains the point. If the point

is not in the cache, the lazy loader creates a new patch,

fills in the patch by reading from the HDF5 file then stores

the patch in the cache. The lazy loader keeps track of the

number of “hits” for each patch in the cache. To speed up

searching for points in the cache, the patches in the cache

are sorted by the number of hits. The patches with the most

hits are placed toward the top of the cache. If the cache is

full, the patch with the least number of hits (i.e. the patch

at the bottom of the cache) is deleted first to make room for

new patches.

B. Data Tiling

For large data grids, it is inconvenient, and at times

impractical to handle the full terrain model data as a single

entity. Instead, it is common practice to organize such data

sets as a collection of tiles – where each tile is of moderate

size. For instance, the MOLA [9] data for all of Mars is

178178

available from PDS servers at multiple resolutions, with

the coarsest data consisting of single tiles, while the higher

resolution data sets are broken up into multiple tiles. The

smaller size of the individual tile data allows them to be

more conveniently manipulated and organized. For these

reasons, SimScape allows the TopoGrid data to consist of

a grid of tiles that span the full data extent. At run-time,

the presence of such tiles is transparent to applications.

The terrain model API is designed so that access to the

underlying data remains the same irrespective of whether the

underlying data is organized as a single tile or as multiple

tiles. The lazy loading techniques described above are also

available with such tiled data sets. However, the added

complexity with multiple tiles is that the lazy load page

may straddle multiple tiles at any given time.

One of the side benefits of using a tiled representation is

that the algorithms for creating and transforming the terrain

data can often be parallelized to work with individual tiles.

Not only does this reduce the memory/disk requirements on

the computer, but also can be very important in reducing

the time needed to process such large terrain data sets to

manageable levels.

IV. CONTINUOUS LEVEL OF DETAIL VISUALIZATION

In simulations, we often need to display terrain data sets

that are made up of billions of vertices. For example, the

MOLA data set, which is displayed in Figure 3, consists

of about 1 billion vertices. This amount of data cannot be

displayed all at once in a real-time visualization. We need a

method of displaying the content that the viewer is interested

in, and at the best available resolution. We accomplish this

by using a continuous level of detail (LOD) technique called

clipmapping [10]. Clipmapping allows us to display high-

resolution data where we need it and lower resolution data

elsewhere. The placement of the high-resolution area is

done dynamically. In conventional LOD techniques, visual

artifacts can occur when higher levels of detail pop into the

field of view. Clipmapping avoids this and thus results in

a smoother rendering. Clipmapping also has a significant

performance advantage since most of the computation can

be done on the GPU.

Our continuous level of detail (CLOD) system is designed

to meet several requirements:

• Be able to display planetary bodies together with high-

resolution digital elevation map patches.

• Support the display of large data sets such as ones larger

than 100K by 100K, which cannot be loaded fully into

graphics memory.

• The terrain data must be displayed in real-time at a

frame rate of at least 30 frames per second.

• Allow wheel tracks to be overlaid on the terrains in a

dynamic fashion.

• Support displaying terrain data in multiple camera

viewports.

• Support the display of multiple data sets together in the

same scene.

(a) Mars

(b) We can zoom in to get a detailed view of Valles Marineris

Figure 3: A rendering of the MOLA data set at its highest

resolution.

A. Clipmapping

The clipmap approach shows detail at full resolution

at a specific location (usually where the viewing camera

is pointing) and progressively reduces resolution for areas

further away from this location [10]. This is accomplished

by organizing the geometry into multiple nested rectangular

grids (called clipmap levels), which are centered about some

common position. Each successive clipmap level’s resolution

is reduced by a factor of two as shown in Figure 6.

The clipmapping technique is suitable for implementation

on a GPU. This leads to a large performance improvement

as GPUs typically have hundreds of cores, which can

carry out computations in parallel. The CPU allocates the

clipmap levels only once during initialization. (This is more

efficient than a more conventional LOD approach, which

may require levels of details to be reallocated periodically

as the camera view changes.) During render time, as the

position of clipmap center is moved around, the GPU does

the necessary calculations and adjustments of the vertices of

the mesh. The movement of the clipmap center can be seen

in Figure 4.

Since the terrain data sets can be very large, they cannot

normally be fully loaded into memory. Hence, we rely on

terrain lazy loading to load only the required height field data

on the fly into memory. Of course, each time a clipmap level

is rendered, it will require terrain data of the appropriate

179179

(a) Rover at time t

(b) Rover at time t + 50 seconds

(c) Rover at time t + 100 seconds

Figure 4: The highest-resolution area can be dynamically

adjusted. In this case, the high-resolution area is following

a rover.

resolution to be available. There are two approaches to

getting the coarser levels of terrain data: the first approach is

to pre-generate a series of coarser versions of the terrain and

register them with the terrain. The appropriate coarser level

will be used when rendering a level. The second approach

is to work with just the highest resolution terrain data, and

to attach lazy loaders at multiple coarseness levels (utilizing

HDF5’s striding functionality) and load data into memory at

the appropriate level of coarseness. While the latter method

has the advantage of avoiding the need for pre-processing

of the data, it has lower performance since reading HDF5

data at non-native resolutions is considerably slower.

1) Clipmap Levels: Each terrain graphical object is com-

posed of multiple clipmap levels. This is shown in Figure

5. As seen in Figure 6, each clipmap level is composed of

a rectangular mesh grid. Each clipmap level has an optional

inner grid that can be toggled. The inner grid is disabled for

all clipmap levels except for the innermost level.

The innermost level is at the highest resolution of the

underlying terrain data. The next outer level is coarser and

is at half the resolution. Each clipmap level is constructed as

static on the CPU side. To adjust the vertices to conform to

the underlying terrain data, height maps are sent in the form

of textures to the GPU during render time. The GPU does the

necessary calculations to correctly adjust each vertex based

on the height map.

For performance reasons, as the viewer gets further from

the terrain, we disable the inner clipmaps. We only do this

when the viewer is sufficiently far enough such that the

change is not noticeable.

Figure 5: Three clipmap levels displayed in wireframe mode.

The level with the finest resolution is closest to the viewer.

Full resolution
Half resolution

Quarter resolution

Figure 6: An exploded view of the clipmap levels. The

clipmap levels are at progressively higher resolution such

that they can be nested within each other.

2) Digital Elevation Maps and Planets: Clipmapping

works for both DEMs and planets. As shown in Figure 7, in

the case of DEMs, the clipmaps are offset from a plane. In

the case of planets, the clipmaps are offset from a spheroid.

This is shown in Figure 8.
3) Loading Data: The height map data must be loaded

from disk, into memory, and then sent to the GPU.

To avoid loading data every time we move a clipmap, we

set the lazy load window to a size larger than the size of the

180180

Figure 7: A digital elevation map displayed using clipmaps.

The blue is the finest resolution mesh, while the red is the

coarsest.

Figure 8: When displaying planets, clipmaps are wrapped

around a spheroid.

clipmap. Each time the clipmap moves out of the bounds of

the lazy load window, fresh data is loaded from disk.

For very large data sets, the time required to load data

from disk can impact rendering performance. This can

reduce the visualization responsiveness as the user mouses

around to change the camera viewpoint. To avoid this, we

load the terrain data in a background thread. This allows the

data to be gradually filled in. The order in which the data

is loaded is important. The coarsest level clipmap is loaded

first. Gradually, the inner clipmaps are filled in. Lastly, the

center-most clipmap is loaded.

4) Positioning High Resolution Mesh: During each ren-

dering step, we reposition the clipmaps based on the cam-

era pointing direction and location. This places the high-

resolution area at the location the viewer is looking.

Placing the high-resolution area is more involved when

multiple cameras are viewing the same terrain. We determine

which camera is most active. We then allow that camera

to have control of where the highest-resolution clipmap is

placed.

Sometimes it is necessary for the highest-resolution

clipmap to automatically follow an object of interest; e.g.

a rover moving on a rough terrain. Were the rover to be

surrounded by coarser regions then it is quite possible that

the rover may appear to be hidden under the lower-resolution

clipmaps or float above them. For such needs, we allow the

highest-resolution clipmap position to be optionally tied to

any object in the scene. This includes tying it to the rover

as illustrated in Figure 4.

5) GPU Program: Once the data is loaded from disk,

almost all of the computation is done on the GPU pipeline

including the vertex shader, the geometry shader, and the

fragment shader. First, the vertex shader program positions

each vertex of each clipmap level. To do this, the vertex

shader must take the clipmap’s mesh coordinate and convert

it to a Cartesian coordinate. To get the x and y position,

it first multiplies the mesh coordinate by the resolution

of the clipmap grid data. It then offset this value by the

current clipmap center position (typically the position that

the camera is pointing at). To get the z position, it samples

the height map texture. The above procedure is for DEMs,

but an analogous procedure is used for planets.

The geometry shader then removes any unneeded vertices.

This is only relevant in cases where the terrain has missing

data. These areas become holes.

Lastly, the fragment shader computes the color of the pixel

based on lighting direction, albedo, and surface normal. The

surface normal may be perturbed at this stage to give the

impression of a wheel track. Additionally, an optional color

overlay can be applied at this stage. Both wheel track and

color overlay information is sampled from a texture that can

be updated at each render step by the CPU.

6) Seams: Vertical gaps appear at the intersections at

which two clipmaps meet. These gaps appear at every other

vertex of the finer-resolution clipmap. This can be seen in

Figure 9. We generate triangles to fill in the gaps. These

triangles act as a skirt that surrounds each clipmap level.

Figure 9: The seams, where the two clipmap levels meet,

are highlighted in red.

181181

B. Combining Multiple Data Sets

Planetary terrain data may come from more than one

source. To visualize the multiple data sets, we use a scene

graph. The scene graph describes the spatial relationship

between the terrain data sets in a hierarchical tree. In Figure

10 and Figure 11, we depict a scene that is composed of the

Sun, Earth, Mars, and the Martian Victoria Crater detail site.

The Sun is at the root of the scene graph. Earth and Mars

are children of the Sun with some position and orientation

offset. The Victoria Crater model is a child of the Mars

planet data with a corresponding offset transform.

Sun

Earth Mars

Victoria Crater

Rover

Figure 10: A scene graph that shows connectivity. Each edge

in the graph contains information about relative position and

orientation.

(a) A rover on Victoria Crater

(b) Zoomed out version of the above image, which shows
Victoria Crater in the context of the rest of Mars

Figure 11: An example of positioning multiple terrains using

a scene graph.

The example described above is approximately how our

simulation arranges the data. But this type of arrangement

of the objects can lead to significant floating-point error

when visualizing such large scenes. This error manifests as

jitter in the position of the camera and graphical objects.

In current graphics cards, coordinates are stored as single

precision floating-point. This limited amount of precision

is not enough to simultaneously handle both the vehicle-

scale coordinates and the planetary-scale coordinates. To

resolve this problem, the simulation reorganizes the scene

graph for the visualization in such a way that the camera

can remain close to the origin of the scene. This is shown

in in Figure 12. Branches of the scene graph that contain

large distances are separated. Depending on which object

the user is interested in, the scene is rearranged such that

the object of interest is placed at the origin of the scene.

All other objects in the scene are translated relative to that

object. In this way, the coordinates of the objects near the

camera and the camera itself remain small and the jitter

problem is resolved.

Root

Earth Mars Victoria Crater

Rover

Sun

Figure 12: A scene graph that is optimized for visualization.

Victoria Crater is placed at the origin of the scene, and the

rest of the objects are translated accordingly.

C. Overlays

By default, a texture image representing albedo is applied

to the rendered terrain. But, we also support the application

of additional overlays for more realistic visuals. One exam-

ple of this is the support for overlaying wheel tracks onto

the terrain. This is utilized for rover simulation scenarios

where wheel tracks are important visual cues for the rover’s

traverse path. An example of this is illustrated in Figure 13.

We also have implemented support for applying structured

noise to add a visual sense of roughness at the small scale

for low-resolution terrain data.

Synthetic overlays can also be used to provide additional

information to the user. For example, we have support for

applying a color-coded height map to the terrain as shown

in Figure 14. We can also draw longitude and latitude lines

on the terrain.

182182

Figure 13: Wheel tracks overlaid onto a terrain dynamically

as a rover drives.

Figure 14: A color-coded height map overlaid onto a terrain.

V. CONCLUSION

The techniques described in this paper enable the use

of large terrain data in real-time simulations for surface

planetary missions and overcome the serious size limitation

when working with planetary terrain simulations. Inhomoge-

neous terrain data at multiple resolutions and with different

representations can be used together. We can handle DEMs

and planets together in the same simulation. And we can

visualize all this in real time by making use of the GPU’s

large number of parallel cores. Additionally, we can add

various overlays onto the terrains like wheel tracks and

color maps. All this is done without the use of any special

computing hardware.

In the future, we plan to add support for clipmapping

of not just geometry, but also textures. This will allow

us to support displaying very large textures instead of

being limited to the GPU’s maximum texture size, which

is typically 8K by 8K pixels. These textures will be used

for albedo maps, color overlays, and normal maps.

ACKNOWLEDGMENT

The research described in this paper was carried out

at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics

and Space Administration

REFERENCES

[1] J. Balaram, R. Austin, P. Banerjee, T. Bentley, D. Henriquez,
B. Martin, E. McMahon, and G. Sohl, “DSENDS-A high-
fidelity dynamics and spacecraft simulator for entry, descent
and surface landing,” in Aerospace Conference Proceedings,
2002. IEEE, vol. 7. IEEE, 2002, p. 7.

[2] H. Nayar, B. Balaram, J. Cameron, M. DiCicco, T. Howard,
A. Jain, Y. Kuwata, C. Lim, R. Mukherjee, S. Myint,
A. Palkovic, M. Pomerantz, and S. Wall, “Surface Operations
Analyses for Lunar Missions,” in AIAA Space, August 2010.

[3] A. Jain, J. Cameron, C. Lim, and J. Guineau, “SimScape
terrain modeling toolkit,” in Space Mission Challenges for
Information Technology, 2006. SMC-IT 2006. Second IEEE
International Conference on. IEEE, 2006, p. 8.

[4] M. Pomerantz, A. Jain, and S. Myint, “Dspace: Real-Time 3D
Visualization System for Spacecraft Dynamics Simulation,”
in Space Mission Challenges for Information Technology,
2009. SMC-IT 2009. Third IEEE International Conference
on. IEEE, 2009, pp. 237–245.

[5] “PDS: The Planetary Data System.” NASA, 2011. [Online].
Available: http://pds.nasa.gov

[6] “USGS Isis: Planetary Image Processing Software.” USGS,
2011. [Online]. Available: http://isis.astrogeology.usgs.gov

[7] “GeoTiff.” OSGeo, 2011. [Online]. Available:
http://trac.osgeo.org/geotiff

[8] “HDF5.” HDF Group, 2011. [Online]. Available:
http://www.hdfgroup.org/HDF5

[9] “Mars Global Surveyor: MOLA.” NASA,
2011. [Online]. Available: http://pds-
geosciences.wustl.edu/missions/mgs/mola.html

[10] F. Losasso and H. Hoppe, “Geometry clipmaps: terrain ren-
dering using nested regular grids,” in ACM SIGGRAPH 2004
Papers. ACM, 2004, pp. 769–776.

183183

