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The Jet Propulsion Laboratory’s Entry, Descent and Landing (EDL) Reconstruction Task has developed 
a software system that provides mission operations personnel and analysts with a real time telemetry-based 
live  display,  playback  and  post-EDL  reconstruction  capability  that  leverages  the  existing  high-fidelity,  
physics-based simulation framework and modern game engine-derived 3D visualization system developed in 
the JPL Dynamics and Real Time Simulation (DARTS) Lab.  Developed as a multi-mission solution, the EDL 
Telemetry Visualization (ETV) system has been used for a variety of projects including NASA’s Mars Science 
Laboratory  (MSL),  NASA’S  Low  Density  Supersonic  Decelerator  (LDSD)  and  JPL’s  MoonRise  Lunar 
sample return proposal. 

I. Introduction
he JPL EDL Reconstruction Task has developed a re-useable, multi-mission software system that combines 
physics-based spacecraft and environmental simulation with real-time telemetry processing and interactive 
3D visualization to support a variety of NASA spacecraft mission projects and domains. Originally designed 

as a flexible tool to help mission engineers reconstruct actual spacecraft events that occurred during a mission’s  
EDL phase, ETV has shown to be a valuable asset during the pre-EDL trajectory planning effort as well as during 
the operational EDL phase when configured to process and display spacecraft states, via acquired telemetry data, in 
real-time. 

T
On landing day, the MSL1 mission used the ETV system to help operations engineers, mission personnel and the  

public, better understand the state and health of the spacecraft during EDL by visualizing flight software states,  
vehicle position, orientation, altitude, velocity and health information obtained from the mission real-time telemetry 
stream, along with environmental  information such  as  Sun,  Earth,  Mars  orbiter  positions.  This  spacecraft  data  
combined with accurate high resolution digital elevation maps of Mars and the Gale Crater landing site provided the 
MSL engineers with a powerful and accurate visual representation of MSL’s EDL phase. The LDSD 2 project is also 
currently using ETV to visualize physics-based simulation results of their spacecraft  for a variety of test flight 
scenarios to help better understand predicted vehicle performance during EDL, which will eventually allow the  
delivery of heavier payloads than currently possible to the Martian surface.

II. System Requirements, High-Level Software Design and Use Cases
We  determined  very  early  on  that  the  key 

system  requirements  would  include  system 
accuracy,  multi-mission  re-usability,  re-
configurability  and  reduced  cost  deployment 
moving from mission to mission.  In addition, the 
system would need to run on standard workstation-
class  or  high-end  laptop  computer  systems  with 
consumer-level  or  better  graphics  cards.   To 
maintain compatibility with legacy and newer JPL 
simulation,  engineering  and  analysis  tools,  we 
chose  C++,  Python  and  Fedora  Linux  as  our 
development  languages  and  operating  system 
platform.

To help us achieve these requirement goals, the 
core ETV system has been built upon the ongoing 
and  mature  space  vehicle  software  simulation 
framework  and  3D  visualization  software 
developed in the JPL DARTS3 Lab. For physics-
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Figure 1. ETV Software Organization.  The thin, mission  
specific, ETV layer is built in Python and accesses DSENDS 
and Dspace C++ API’s  via SWIG-wrapped Python code  
giving run-time flexibility to get or set system states.1



based  EDL  simulation,  the  DSENDS4 framework  provides  an  accurate  and  mission-proven  basis  for  our 
reconstruction capability and the Dspace5 3D visualization software gives us a high-performance,  kinematically 
accurate, interactive 3D visualization capability.

Both DSENDS and Dspace are built on C++ core frameworks with SWIG6 wrapped Python7 front ends that 
allowed us  to  maintain  ETV’s  thin  mission-specific  Python layers  while  maintaining system performance  and 
reducing development time and cost. In simple terms, both the DSENDS and Dspace APIs are fully available at run  
time via Python scripts that control the operation of the system. In addition, because we run the system in a Python  
main script with a Python command line, we can inspect system state information and/or make function calls into  
the Python or SWIG-wrapped C++ layer. 

To achieve a true multi-mission capability, ETV has been designed to be completely data driven.  Spacecraft  
mechanical system characteristics, including mass, dimensions, center of gravity, location and type of articulated 
full 6 DOF joints, components and physical shape, via CAD models, can be provided to the system as Python 
dictionary items available to both DSENDS simulation and Dspace visualization. If desired, the system can import  
and execute high-fidelity models for a variety of spacecraft 
sub-systems  such  as  Attitude  Control  System  (ACS), 
Reaction  Control  System  (RCS)  and  accurately  modeled 
CAHVOR7 imaging  cameras  models.  Planetary 
environmental data such as gravity and atmospheric models 
accessed by DSENDS can be used to help mission planners 
predict spacecraft landing zones, while other environmental 
data,  such  as  accurate  sky/star  maps,  terrain  digital 
elevation maps and texture imagery, can be used both for 
determining  altitude  above  the  planet’s  surface  and  for 
presenting accurate visualization to users when presenting 
“plan”  or  “context”  views  of  a  large  terrain  area  or 
simulating spacecraft imaging camera views.

Typical system use cases include mission planning and 
proposal  phase  visualization  and  simulation  of  proposed 
spacecraft  flight  paths,  as  well  as  actual  flight  hardware 
and/or software in-the-loop. JPL’s MoonRise Lunar sample 
return  proposal  included  flight  radar  hardware  in-the-loop for  Lunar  Descent,  while  both  Descent  and  Ascent 
mission phases were visualized using prescribed motion spacecraft data. Simulation and real time telemetry-based  
mission operations  support  and  display of  EDL phase  mission  data  was  performed for  the  MSL mission,  and 
simulation and real-time telemetry-based flight experiment support is currently under development for the LDSD 
project. Extended use cases include running in closed-loop mode with flight hardware and/or flight software, with 
ETV providing spacecraft flight profile information, simulated imaging or sensor data hardware. Accurate line-of-
sight  communications  modeling  is  supported  by  the  underlying  DSENDS  simulation  framework  and  is  also 
supported by Dspace the visualization system.

III. System Deployment
When  providing  simulation  and 

visualization capabilities to analysts, a typical 
desktop  configuration  (Linux-based 
workstation)  at  the  user’s  work  area  is 
sufficient.  For  example,  the  LDSD  project 
provides  time-ordered  simulated  prescribed 
motion  spacecraft  and  state  data  can  be 
provided  in  file  format  and/or  serialized  via 
Python  pickling.  Spacecraft  data  usually 
includes  position  and  velocity  vectors  and 
orientation quaternions,  but  can also include 
other ancillary information such as simulated 
spacecraft  health  data,  camera  pointing 
information,  fuel  remaining,  thermal  data, 
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Figure 2. ETV  for  MoonRise  Lunar  Sample 
return  proposal.  ETV  can  visualize  simulated  
spacecraft-acquired imagery using actual camera  
pointing and field of view information.

Figure 3. ETV Supporting MSL Landing Night Operations. 
ETV used  real-time mission telemetry  data  to  display vehicle  
state and health to mission personnel and the public.



vehicle states (chute deployment, etc.) or other simulated sensor acquired data. For actual project flight experiments,  
ETV would be deployed to the flight  test range and project engineers will capture live telemetry from the test  
vehicle.  In addition to providing real-time displays to the LDSD engineers, ETV would be configured to run vehicle 
trajectory simulations,  in  parallel  with the real  time telemetry display,  to  provide predicted  vehicle landing or  
splashdown locations based on the last known vehicle flight parameters, if those predictions are desired by project 
personnel.

For MSL, ETV provided testbed support during critical operational readiness tests (ORTs) by displaying the  
spacecraft states in real time from the simulated telemetry generated by the MSL flight hardware/software testbed.  
On landing night, real time telemetry-based visualization of the final few minutes of the EDL phase was performed 
by reading the mission telemetry stream and processing the telemetry data that originated in the MSL spacecraft and 
then relayed back to Earth through the Mars Odyssey orbiter and NASA’s Deep Space Network8 (DSN).  Telemetry 
data was ingested in channelized form that contained spacecraft states were processed by ETV for real time viewing. 
Post-EDL,  MSL  engineers  are  using  ETV  to  playback  selected  sets  of  predicted  EDL  trajectories  to  better  
understand actual vehicle performance during those last seven minutes prior to landing. These post-EDL studies and 
reconstruction will be used to tune and improve current EDL models and tools as well as guide the trajectory design 
for future Mars or other planetary landings.

IV. High-Performance Visualization
The front-end of ETV is built on top of JPL’s Dspace 3D visualization system.  With the latest version built on 

the Ogre3D9 open source game engine, Dspace supports high frame rate rendering of polygon-based spacecraft and 
planetary  terrain  using  consumer-
level  graphics  cards  and 
workstations. While core library and 
API features are implemented in C+
+, users and high-level control scripts 
have full access to the API via auto-
generated,  SWIG  wrapped,  Python 
bindings and a Python prompt. When 
special rendering is required, Dspace 
makes  full  use  of  modern  GPU 
programmability via GLSL10 shaders 
and  Ogre3D’s  material  scripts.  For 
example,  when  depicting  spacecraft 
flight  paths  that  transition  from 
orbital  to  atmospheric  altitudes,  we 
developed a simple fragment shader 
that blends between sky and star map 
textures based on the altitude of the 
Ogre3D  viewing  camera  to  better 
depict  sky  color  at  all  possible 
altitudes.  All  of  ETV’s  past  and 
current  supported  projects  requested 

that real time telemetry updates be displayed on screen in the form of tabular data and a gauge filled dashboard.  To 
support this, we’ve built a number of python scripts to auto-place, update and color on screen tabular data at run-
time and for MSL, we augmented the tabular data with a dashboard that updated whenever telemetry data was 
received from the MSL spacecraft as shown in Fig. 3. For the LDSD project, we also added 3D CAD ornaments,  
attached to the spacecraft’s reference frame, that depict compass heading, line-of-sight to comm. station, velocity 
vector and spacecraft coordinate axes and because these ornamental objects are known by the underlying DSENDS 
simulation, we can accurately update the ornament’s pointing and orientation information at  every visualization 
redraw.
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Figure 4. ETV  Supporting  LDSD  Flight  Simulation.  ETV  receives  
mission  telemetrey  data  and  displays  vehicle  state  and  health  using  
polygon-based 3D spacecraft and environment representations, as well  
as run-time updated tabular data and ornamental  CAD items such as  
compass graphics, velocity and line-of-sight vectors.
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Terrain Rendering and Very Large Texture Rendering For MSL

In support  of MSL, we have combined the highest  resolution Mars Orbiter  Laser Altimiter 11 (MOLA) data 
available with a very high resolution area of Gale crater made up of multiple MRO HiRise 12 digital elevation maps. 
Our Mars context surface, basically everything that was not Gale crater was constructed from MOLA terrain data 
and contained about 150,000 triangles. The Gale crater terrain had a much higher resolution and contained about 
2.85  million  triangles.  To  color  our  simulated 
Mars  appropriately,  we  first  applied  a  lower 
resolution 16K by 8K pixel Mars context texture 
to the entire Martian surface. To ensure that we 
did not run into any OpenGL texture size limits 
on the variety of graphics cards that we planned 
to support during development and deployment, 
we deliberately divided our full Mars terrain into 
two halves and applied half of the total 16K by 
8K to each terrain portion. This resulted in the 
application  of  two  8K  x  8K  pixels  textures 
across  our  full  Martian  surface.  For  the  Gale 
crater landing area, we applied a high-resolution 
8K x 8K pixel texture over the crater area. The 
Gale crater texture, and the portion of the lower 
resolution  Mars  texture  that  overlapped  Gale 
crater were then blended together at run-time in 
a GLSL fragment shader program to make the 
transition between the lower context texture and 
the  higher  Gale  crater  texture  less  apparent. 
This  blending  allowed  us  to  display  a  Mars 
surface with a more uniform texture color, with 
no degradation of rendering performance.

User Interface Elements and Display Configuration for MSL

As shown in Fig. 3, the MSL mission requested an easy to read dashboard user interface element to help mission 
operations engineers  easily understand spacecraft  states  during the last  7  minutes of  EDL. Working with EDL 

engineers,  it  was  determined  that  the  five  important 
spacecraft  states  to  watch during EDL were Spacecraft 
Fuel  Remaining,  Velocity,  Mach  number,  Acceleration 
and Altitude. The dashboard elements were updated with 
data derived from telemetry. Altitude, for example, was 
computed  based  on  a  mission provided  reference  Mars 
radius  for  the  early  part  of  EDL and  for  the  terminal 
phase,  by  using  spacecraft’s  radar  return  information 
relative  to  a  computed  Mars  surface  frame.  The actual 
dial  graphical  elements  are  based  on  a  custom Python 
class  that  modifies  state  variables  for  the  underlying 
GTK13 widget.

To  help  tell  a  complete  story  for  MSL,  ETV  was 
configured  to  display  both  a  spacecraft  chase  view  as 
shown in Fig.  3,  and a  spacecraft  trajectory view in a 
second, simultaneous visualization viewport. Both views 
displayed the current state of the MSL flight system based 

on  flight  software  states  received,  in  combination  with  current  spacecraft  position  and  orientation  data.  The 
trajectory added to the chase view by displaying the spacecraft trajectory line with flight software mode changes  
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Figure 5. High-resolution  Gale  Crater  Terrain  Texture 
blended With Lower Resolution Full Surface Mars Context 
Texture. GLSL fragment shader seamlessly blends high and low  
resolution Mars textures at run time. 

Figure 6. MSL  Trajectory  View  With  Final 
Landing Ellipse



attached to the trajectory line at the location that the mode changed.  This helped MSL engineers better understand  
when and where important mode changes, such as parachute or heat shield deployment occurred. To maintain a  
“hands-off”  operation  during landing night  activities,  ETV was  pre-programmed to  present  varying views  and 
camera locations automatically at various times during the EDL phase. These auto view changes were tied to flight  
software  mode  changes  as  those  changes  were  received  in  the 
telemetry stream. 

MSL EDL engineers also requested a variety of other views of 
the Gale Crater landing site that  displayed MSL along with the 
Odyssey  and  MRO  orbiters  at  touchdown  time  and  view  of 
Odyssey from MSL. Other views that  ETV supported for  MSL 
included MRO looking at MSL and a view of Mars from along the 
Earth  vector.  ETV  can  support  any  number  of  varying  and 
multiple viewports, by attaching viewport cameras to any of the 
spacecraft  or  planetary  body  objects  reference  frames  in  the 
simulation, resulting in a wide range of accurate views into the 
simulation environment.

V. Multi-Mission Simulation and Support For Multiple 
Frames of Reference

The ETV software was written entirely in Python using the DSENDS and the Dspace 3D Visualization System.  The 
DSENDS framework is based on The JPL DARTS Lab’s Dshell++ Multi-Mission Simulation Framework14. Our 
ETV  simulations  are  typically  driven 
from  time-tagged  position,  attitude  and 
velocity data (no forces were applied to 
the models) in file format or, in the case 
of  MSL,  actual  acquired  spacecraft 
telemetry.  Dshell++  “body”  objects  are 
used  to  model  the  relationship  between 
spacecraft  and  the  primary  planetary 
body. Spacecraft bodies are connected to 
this primary planet body by a full 6 DOF 
(translation + rotation) hinge. Spacecraft 
motion during a simulation is controlled 
by prescribing spacecraft  hinges  and  by 
using the appropriate spacecraft position 
and attitude data, relative to the primary 
planetary  body.  For  space  mission 
simulations  that  model  cruise  phase  the 
primary planetary body might be the Sun, 
Earth or destination other planet and for 
multi-spacecraft  rendezvous  scenarios, 
spacecraft  “A”  may  be  connected  to  a 
destination  planetary  body,  while 
spacecraft “B” is connected to Spacecraft 
“A”.  This  parent-child  relationship  is 
required  for  our  simulation  bodies,  as 
every  hinge  must  have  a  parent  hinge. 
Note  that  this  time-tagged  spacecraft 
motion  data  can  be  applied  to  any 

American Institute of Aeronautics and Astronautics

Figure 7. View  of  Gale  Crater,  MSL, 
Odyssey  and MRO from orbit  range.  Sun 
illumination is correct for EDL day on Mars.

Figure 8. Planet-Centered EME2000 (J2000) Reference Frame for 
5



spacecraft supported in a given simulation, though spacecraft and planetary body motion data can also be provided 
via NAIF Spice15 kernels as well.  Typically all of our ETV simulations combine time-tagged motion data with  
Spice kernel  motion data and in the case of  our MSL simulation, motion for three Mars orbiters:  MRO, Mars 
Odyssey16 and Mars Express17 were Spice kernel-based as were the planetary bodies representing Mars, Earth, Sun 
and Star Field.

A. Coordinate Frames

Spacecraft position, velocity and attitude data are always supplied relative to a reference frame. Here are some of 
the frames used for telemetry reconstruction: 

1. Planet-Centered EME2000 (J2000) Frame.  This is an inertial frame with origin at the center of the planet and 
orientation aligned with the Earth Mean Equator and Equinox of Epoch J2000 inertial reference system 18. This is a 
right-handed Cartesian set of three orthogonal axes chosen as follows:  The +Z-axis is normal to the Earth mean  
equator at epoch J2000,  +X-axis is parallel to the vernal equinox of the Earth mean orbit at J2000, and the +Y-axis 
completes the right-handed system.   The epoch J2000 is the Julian Ephemeris Date (JED) 2451545.0. Spacecraft  
position, velocity and attitude telemetry data are given in the J2000 Frame.

2. Planet-Centered Planet-Fixed (PCI) Frame.  This is an inertial (non-rotating) frame with origin at the center of 
the planet.   The +X-axis is  defined to pass through the point  on the equator defined at  zero latitude and zero 
longitude. The +Z-axis is through the North Pole. The Y-axis completes the right- handed axes system. The J2000 
base time (epoch) is always specified by the mission we’re supporting and for that specific simulation data set. In 
Dshell++, the spacecraft position, velocity and altitude are specified in the PCI frame.

3. Planet-Centered Rotating (PCR) Frame. This frame is the PCI Frame with an angular velocity equal to the 
planetary rotational velocity. A PCR frame is used when simulation CAD ornaments such as surface landing frames,  
spacecraft  trajectory or ground track lines,  representations of ground-based compass heading lines and physical  

structures  such  as  communication 
towers or buildings need to be placed 
on  a  planets  rotating  surface.  For 
MSL  we  attached  CAD  ornaments 
for spacecraft trajectories and surface 
frame  coordinate  axes  to  the  PCR 
frame  and  for  LDSD,  which  is  an 
Earth-based simulation, compass and 
communication structure graphics.

4. Surface Fixed (SF) Frame. This 
is an East-North-Up (ENU) frame at 
the  planet’s  surface  at  or  near  the 
landing  site.  The  SF  Frame  is 
attached to the PCR Frame so that the 
SF Frame rotates with the planet. For 
MSL, this frame is called the “Mars 
Surface Frame” (MSF). The +UP axis 
is the radial vector from the center of 
the planet to the planet surface. The 
+EAST axis is  constructed from the 
cross  product  of  the  +Z-axis  in  the 
PCR frame and the  +UP-axis.   The 
+NORTH  axis  is  the  cross  product 
between the +UP and +EAST axes. 

For the MSL mission, the acquired 
telemetry  spacecraft  position  data 
switched from the J2000 frame to the 
MSF frame near the end of the EDL 
phase.  Unfortunately,  because  the 
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Figure 9. Planet-Centered Planet-Fixed (PCI) Reference Frame for 



MSF frame was determined on-board the MSL spacecraft during the EDL sequence and after the landing radar has  
been activated, and then only stored on-board and not transmitted via telemetry back to Earth, the location and  
orientation of the MSF frame were not available to our live telemetry playback visualization, so only an estimate of  
the location of the MSF frame could be derived. Because this type of reconstruction capability fits nicely into the  
ETV charter, we were able to construct an estimated MSF frame by comparing the last known J2000 spacecraft  
position with the first received MSF spacecraft position from telemetry. Since the MSF frame location is constructed  
from the radial position of the spacecraft in the PCR frame, the error of the MSF frame location depends on the time 
difference between the last known J2000 spacecraft position and actual position of the spacecraft when MSF Frame  
was created. A post-landing analysis using best available estimates, of the actual landing night MSF frame location,  
showed that our computed MSF frame was off by about 2.5 km from the actual MSF frame location. On-going,  
reconstruction of the spacecraft flight path during EDL is facilitated by combining spacecraft telemetry with ground-
truth actual descent or orbiter imagery which allow for accurate registration of the spacecraft flight path with the 

surface of Mars.

5. Spacecraft Body (SC) Frame. This frame is attached to the spacecraft 
body and  is  typically defined  by a  mission,  based  on the  mechanical 
specifications of the spacecraft. In Dshell++, the SC Frame is attached to 
the PCI Frame. 

6.  SPICE Frame. This  frame  is  attached  to  astronomical  bodies  and 
spacecraft defined by SPICE kernels.  Orbits of spacecraft and planetary 
bodies obtained from Spice kernels are defined in a SPICE frame.

B. Frame-to-Frame Transformation Operations

At  each  time  step  in  our  simulation,  which  from  simulation  to 
simulation could range from a time step resolution of  two seconds or 
lower  for  test  data  to  1000hz  or  higher  for  high-rate  simulation data, 

Dshell++ provides  C++ libraries,  with Python interfaces,  to create Frame objects and to transform vectors and 
quaternions from one frame to another.  Below is the procedure used to set a typical spacecraft’s position, velocity  
and attitude from simulation or telemetry data:

1. Obtain spacecraft position, velocity and quaternion vectors in J2000 frame from mission data.

2. Use Dshell++ Frame library to convert the position, velocity and quaternion from J2000 frame to the PCI 
frame.

3. Set the spacecraft body hinge translation vector to the position in the PCI frame.

4. Set the spacecraft body hinge rotation to the quaternion in the PCI frame.

5. Compute relative ground velocity by converting velocity from PCI frame to PCR frame.  The relative 
ground velocity is used to estimate the spacecraft’s Mach number with a zero wind velocity.

VI. System Testing for Correctness
Because ETV was scheduled for use by MSL as an operations tool we needed to test the ETV software for 

reliability and correctness in multiple ways. First, we fuzz tested to test for the stability of the software. We used the  
comma separated value (CSV) formatted data input mode of the software for this. This mode of operation is a 
testing-only mode that simulates telemetry data input. To do the fuzz testing, we mutated existing CSV data files  
that we captured from a variety MSL mission tests. Mutation involved re-ordering data rows and adding noise to  
numeric data and flipping of Boolean value data elements. In a scripted loop, we mutated data and fed it into the  
software to make sure that we exercised the software fully. 

We also performed regression testing on our software. Regression testing involved taking software in a known 
good state and having it render images to disk. These images would be kept under revision control to make sure that  
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Figure 10. Example  MSL 
Descent  Stage  Body  Frame.  MSL 
spacecraft body frame as supplied by  
the MSL mission.
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any changes we made in the future would not introduce regressions in the form of visual changes.  In  the JPL 
DARTS Lab, we use a continuous integration server. We used this continuous integration server to automatically  
test our ETV software and all underlying software libraries on a regular basis.

To  make  sure  that  bad  code  was  never  merged  into  the  main  development  branch,  we  made  use  of  our  
configuration management software's pre-save hook capability. Whenever a developer tries to release the code into 
the main development branch, the hook would check that the developer ran the developed regression tests and that 
all tests passed without error. Since we were developing mostly Python code, we used the Pylint 19 static analysis tool 
for  Python.  It  would find things  such  as  undefined  variables,  unused variables,  and  bad  indentation (which is  
important in Python).

In addition to automated testing, we also did extensive manual testing and while a bit tedious, this was the only 
way to exercise the variety of pathways in the code when users performed a variety mouse operations or keyboard  
hotkey  presses  which,  for  example,  triggered  a  variety  of  different  visual  capabilities  in  the  code  such  as  
enabling/disabling auto view changes or toggling on/off the MSL landing ellipse. Because we had the help of three  
interns spending the summer at JPL, we were able to perform many hundreds of manual runs in a relatively short  
period of  time prior  to the final  MSL readiness  tests and of course landing night.  For this manual testing,  we  
constructed a spreadsheet-based testing form with questions that  the interns  and ETV staff  members  answered 
regarding system operations at a minimum of ten different and random points during each simulation run. Interns  
and  staff  ran  our  ETV  software  against  each  of  close  to  thirty  MSL  testbed  simulation  files,  checking  for  
correctness. Among other things, they checked the numerical output, displayed as tabular text data on the ETV 
viewports, against the dashboard gauges to ensure the correctness of the ETV visuals. Because we had about thirty 
stored MSL test cases, each manual test resulted in approximately seventy data points per run. 3D viewport visuals  
were  also  checked  during  these  test  runs  to  ensure  that  the  ETV viewports  displayed  spacecraft  position  and  
orientation as expected, as well  as flight  system changes such as chute deploy and powered descent mode. As 
expected, multiple bugs were found by staff and interns, which we quickly fixed. 

Finally, and prior to final system deployment, we stress tested the software by running it in a continuous loop.  
This basically confirmed that no memory leaks or similar bugs existed in the code. We performed this loop test 
while running on a variety of our development workstations, as well as on the actual deployment machine that we 
planned to use on landing night.

VII. MSL Telemetry Processing Module
The  MSL  Telemetry  Processing  Module  (MSLTelem)  is  the  interface  between  the  MSL  EDL  spacecraft  

telemetry and ETV. MSLTelem is written entirely in Python and directly interfaces with the Python mission specific 
code layer as shown in Fig. 1. 

Fig.  11  shows the  data  flow and interfaces  within MSLTelem to the  simulation and  MSL EDL telemetry. 
Regardless  of  where  the  telemetry 
originates  from;  e.g.  a  test  data  file, 
near  real-time  playback  or  a  live 
telemetry  feed,  the  processing  is  the 
same.  MSLTelem will execute a script 
that  queries  the  mission’s  channelized 
spacecraft  telemetry  data  stream  for 
specific EDL data products. MSLTelem 
processes  and  maps  the  data  to  the 
required ETV interface inputs that  are 
used  to  advance  the  simulation  and 
update  the  spacecraft  state  and  health 
information. 

MSLTelem is  modeled  as  a  finite 
state  machine  (FSM)  using  the  FSM 
Class  Module  that  is  part  of  the 
DSENDS Simulation Framework. This 
ensures  predictable  execution  paths 
with the FSM’s defined list  of known 
states, actions and triggering conditions 
(or  events)  for  state  transitions. 
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Figure 11. MSL  Telemetry  Processing  Module  Data  Flow  and 
Interfaces.



Essentially after initialization, MSLTelem will enter into a polling state waiting for telemetry data that  will be  
processed and sent to ETV.  

A. Interfaces
1. MSL EDL Telemetry

The functional requirements for the MSL Telemetry Processing module were developed in collaboration with 
MSL EDL engineers and documented in an Interface Control Document (ICD).  The ICD specifies the EDL real-
time data products (RTDP) and variables for spacecraft timestamps, position, velocity, orientation, ground altitude 
along with their channel IDs, reference frames and valid state ranges. Additional information is documented for 
spacecraft clock offset, key event timeline, spacecraft states, expected data gaps, data rates, old interleaved data, fuel 
health data, data priorities and flight rules.  

The highest data priority is the state data, followed by the Mars Surface Frame (MSF) data and then the J2000  
entry navigation data.  This means that there could be cases where the only data MSLTelem receives would be the  
state data or state data with possibly some portion of the J2000 entry navigation data or MSF data. Note that real  
time telemetry product rates range from 0.5hz to 4hz and any telemetry data product whose time tag is older than the 
current received spacecraft clock time and is also outside of the bounds set by that products data rate, is assumed to  
be older, interleaved, spacecraft recorded data and is ignored.

2. EDL Simulation/Visualization (ETV)

The ETV interface used by MSLTelem consists of three generic and one mission specific interface functions 
(Fig. 11).  The Advance Sim function is used to advance the simulation in time and update the spacecraft’s position, 
orientation and velocity in the simulation and visualization.  The Update State function reflects the transitions in the 
spacecraft’s event states (e.g. heading alignment, parachute deployment, heat shield separation, Mars Surface Frame, 
backshell  separation, rover deployment,  etc.) and the onscreen tabular event state list  is visualized to show the  
current state and past received states.  The Update Health function, specific to our MSL simulation, sends values 
representing the amount of fuel used by the MSL spacecraft to the onscreen fuel remaining gauge.

The fourth interface was an additional functionality added to ETV for MSL to support a transition of reference 
frames from J2000 to MSF navigation.  The MSL spacecraft  calculates the MSF on-board, however that  MSF 
information is not contained in the telemetry stream, therefore ETV generates its own predicted MSF. The Create  
MSF interface function was added to support the creation of this simulated MSF frame.  MSLTelem provides ETV 
with the spacecraft position and orientation information from the latest J2000 reference frame along with the first  
valid  spacecraft  position  and  orientation  in  MSF.  ETV  can  then  reconstruct  an  MSF at  this  reference  frame  
transition.  Additionally there are two off-nominal cases that can affect the creation of the MSF.  In the off-nominal  
case where no J2000 positional  data is available MSLTelem still  requests ETV to generate an MSF. However,  
without the J2000 data, ETV has to make certain assumptions that result in the creation of a simulated MSF that  
resides in the center of the landing ellipse.  In the second off-nominal case where in addition to no J2000 positional  
data items there are also no J2000 timestamps.  In this case MSLTelem isn’t able to determine valid time stamped 
groupings of the MSF positional data, therefore no MSF can be created.  So for this second off-nominal case, the 
ETV onscreen display would not get any spacecraft positional updates but would still likely be receiving the updated 
state data which is the highest priority data. Note that additional details on MSF are described in the Section V.

A. Testing

As shown in Fig. 11, MSLTelem runs in three modes that designate if the telemetry is from a test data file, live  
telemetry stream or near real-time playback. MSLTelem feeds the data through the same Python sub-process pipe 
mechanism regardless of its origin so essentially telemetry data source is independent from the actual processing.

The MSL test data files were collected during testbed tests and were used to support ETV system development  
unit  tests,  system integration  and  stress  testing.   The  data  files  also  provided  a  means  to  generate  other  test  
conditions such as data gaps and interleaved data, as well as being massaged for stress testing.  More information is  
provided on the system regression and stress testing in Section VI.   

Live testing was performed with the MSL testbed data whenever the MSL EDL engineers ran an EDL test or  
whenever there was a flight software regression test or a second chance test might result in nominal or off-nominal  
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spacecraft performance. Live testing also provided the capability for MSL EDL to use a channel simulator that  
generated a telemetry stream with data gaps or entire dropouts of J2000 or MSF data.

The capability of a near real-time playback of previous testbed telemetry data using the MSL Channel Down tool  
allowed simulated live testing when live testbed testing wasn’t available, as well as being able to repeat live testing 
with near real-time feed.

Additionally, during some tests the runtime output was logged in case there was a need for post-test analysis of 
ETV’s behavior.  For example, this output data was used to help understand the data gaps in telemetry and how the  
simulation was handling those data gaps. Initially, when data gaps were encountered the visualization trajectory  
trails showed a step-wise jump when there was a gap as opposed to an expected straight-line segment.  Data plots 
from the logs clearly illustrated the data gaps and revealed that the simulation needed to make an adjustment in how 
the spacecraft simulation body was rotated along with the Mars surface in order to handle these data gaps properly. 

Verification of system correctness as it related to the simulated spacecraft’s final landing location was done by  
visual comparison with MSL predicted simulation runs and reviewed by the MSL ETV and MSL EDL engineers.  
Additionally, for a subset of MSL testbed runs, we inspected ETV’s final reported spacecraft landing locations and 
compared against MSL EDL engineer-provided spacecraft positions with respect to the MSL Landing Target Frame 
(LTF). 

Testing helped define ETV operational processes that were eventually included into the MSL EDL operational  
timelines for ORTs and Landing night. These checks included such items as whether the simulation epoch required 
updating due to spacecraft clock drift; updates to the landing ellipse size and location; telemetry data flow pipeline 
check-out queries; and confirmation of the runtime telemetry channel query parameters by MSL EDL engineers 
Additionally, a separate channel query process was set up to collect telemetry data to be added to ETV’s collection 
of test data sets. 

VIII. Conclusion
The JPL developed EDL Telemetry Visualization system (ETV) has been developed as a multi-mission tool to 

support a wide range of NASA space mission simulations, vehicle and model performance reconstructions and  
interactive visualizations via playback of mission predicted, simulated spacecraft state information as well as from 
actual spacecraft telemetry and mission acquired imagery. Accurate representation of the modeled flight system or 
systems, including any number of spacecraft with full 6 DOF joints, multiple reference frames and environmental  
data such as planetary gravity, atmosphere, lighting and terrain are supported. A powerful high fidelity, physics-
based  simulation  framework  forms  the  basis  of  the  ETV system and can  perform a  wide  range  of  predictive 
computation for spacecraft vehicle performance and trajectory through the use of built in or third-party provided  
spacecraft sub-system computer models. 

The design and development of the ETV software leveraged existing, mature, and widely used JPL simulation 
tools and frameworks. This means that we only need to build thin, mission specific code layers that access the thick  
layer of existing multi-mission features and capabilities of the simulation and visualization frameworks.  Because 
these existing tools have been fully verified and validated for accuracy and come with an extensive regression test  
suite, we can easily maintain the accuracy and correctness of our deployed ETV systems as we move from project to 
project. 

Future work considerations for simulation, visualization and telemetry processing will include the development 
of a generic multi-mission telemetry module that will be completely driven by standardized data and command 
dictionaries which fully define the data products, data rates, and flight rules such as knowing which data products  
are valid during various portions of a mission simulation, data or reference frame conversions, possible spacecraft  
clock offsets, and the handling of interleaved time-ordered data.  In addition, full setup and runtime operation of the 
3D visualization, including layout of onscreen text data, dashboard gauges and camera viewpoint transitions could  
be driven using a standardized specification. We will also continue to work with MSL, LDSD and future missions to  
further enhance our suite of simulation and reconstruction tools.
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