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Abstract We describe a general approach for using linearizing feedforward control inputs
for large degree of freedom (dof) multi-limb robots operating in scenarios involving motion
and force constraints, and under-actuated degrees of freedom arising from the task and the
environment. Our solution is general and has low computational cost needed for real-time
control loops. It supports the tuning of the feedforward term to meet multiple task objec-
tives. Being structure-based, it is able to easily accommodate changes in motion and force
constraints that often occur in robotics scenarios.

Keywords Robotics · Dynamics · Control

1 Introduction

Mobility and manipulation of multi-limb robots, such as humanoids and legged robots, re-
quires the coordinated control of multiple coupled degrees of freedom (dof) in the system.
Example scenarios include robots walking on an uneven surface, climbing a ladder or using
a tool. Beyond the large number of degrees of freedom, mobility and manipulation con-
trol challenges for such robotic scenarios include: the highly nonlinear nature of the system
dynamics; the under-actuated nature of the system (i.e., not all degrees of freedom are actu-
ated); motion constraints on the system; the time varying nature of the constraints (e.g., leg
contact with the ground); and the need to meet multiple control objectives.

Techniques for handling such control problems include the combined use of feedfor-
ward and feedback control to remove nonlinearities and obtain uniform control performance
across the configuration space. The computed torque method for unconstrained manipulators
is a well known example of such a technique [2]. Feedforward terms are used to generate
actuator commands that exactly meet the control objectives assuming perfect sensing and
control. The feedback terms correct for deviations that arise from imperfections in sensing
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and control. The use of feedforward compensation improves precision, reduces the demands
on the feedback controller and improves its robustness and performance despite the large
dynamic range in the nature of the tasks. Righetti et al. [10] describe an elegant extension
of this feedforward control approach for mobile legged robots. The alternative whole body
control approach [12] decomposes the control problem based on prioritized objectives using
projected operational space techniques [7]. The strength of this approach is that it poses the
control problem directly in task space, but it can be computationally demanding.

Our motivation for this research is to develop a general purpose control paradigm
that handles the complex interactions across a broad variety of multi-arm manipulation,
legged/wheel mobility and combination of robotic tasks potentially involving articulated and
constrained task objects. With this objective in mind, we present a general formulation of the
feedforward control approach that meets these goals. While we are close in spirit to [10], our
approach differs in some simple, but crucial respects that make it more broadly applicable as
well as less complex and lower cost. The technique in [10] focuses on legged systems with
under-actuated degrees of freedom for the robot’s torso, uses joint selection matrices which
narrows down its applicability, and adds complexity by eliminating the constraint contact
forces from the dynamics model. In contrast, our approach introduces the more general no-
tion of passive degrees of freedom which can arise from the robot degrees of freedom as
well as the task object degrees of freedom. Moreover, we do not require passive degree of
freedom torques to be zero, and instead only require them to be known functions of the robot
state. These basic changes allow our formulation to cover a very large family of combined
manipulation and mobility activities. Also, we avoid the generalized inverse steps needed
in [10], and derive a direct, simpler, and lower-cost feedforward control formulation that
is very general. Our integrated robot/task/environment perspective decouples the impact of
the constraints on the permissible motion from the way that the passive degrees of freedom
affect the feedforward solution. The resulting space of feedforward solutions allows us to
further refine the solution to meet secondary task objectives.

We demonstrate our new general purpose control technique in scenarios consisting of
legged robots performing a variety of mobility and manipulation tasks such as the opening
of valves, climbing ladders and walking across slopes in simulation.

2 Feedforward inverse dynamics for control

We begin by reviewing the use of feedforward control for the motion control of an un-
constrained branched topology manipulator. Using N to denote the number of degrees of
freedom, the equations of motion for such a robotic system can be expressed as

M(θ)θ̈+ C(θ, θ̇̇̇) = T (1)

where the configuration dependent, symmetric matrix M(θ) ∈RN×N is the mass matrix of
the system, C(θ, θ̇̇̇) ∈ RN includes the velocity dependent Coriolis, gyroscopic and grav-
itational forces, and T ∈ RN denotes the applied generalized forces. The mass matrix is
positive-definite and invertible for branched systems. We generalize the definition of the
C(θ, θ̇̇̇) to also include all explicitly known generalized force contributions, e.g., the J∗efext
terms from a known end-effector spatial force fext where Je denotes the end-effector Ja-
cobian.1 The general idea is that C(θ, θ̇̇̇) includes all the explicitly known, state-dependent
terms that appear in the equations of motion.

1The “∗” superscript denotes matrix transpose.
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Fig. 1 Block diagram illustrating the use of feedforward and feedback controllers for robot motion control

The motion and tracking control problem for robots requires the design of feedback con-
trol that will drive the robot along a desired motion trajectory while meeting requirements
on position and trajectory tracking error, disturbance rejection, etc. While a substantial body
of techniques for doing this is available for linear time-invariant dynamical systems, they do
not directly apply to nonlinear dynamical systems such as in Eq. (1). Linear feedback con-
trol techniques perform poorly due to the widely varying nonlinear dynamics of the system
across the configuration space.

The computed torque method for robot control provides a solution to this problem [2]. As
illustrated in Fig. 1, the basic idea is to use feedforward control in conjunction with feedback
control to handle the nonlinearities across the large configuration space. The feedforward
term’s role is to linearize the system dynamics, so that linear control theory techniques
can once again be used to design the feedback controller. Assuming that all the degrees of
freedom are actuated, the computed torque approach uses a feedforward torque Tff of the
form

Tff = TINV(x= θ̈d, θ̇̇̇,θ) where TINV(x, θ̇̇̇,θ)
�
=M(θ)x+ C(θ, θ̇̇̇). (2)

The TINV(x, θ̇̇̇,θ) function represents the standard inverse dynamics computation of gen-
eralized forces for a vector x of joint accelerations for a tree topology system. For brevity
we will use TINV(x) instead of TINV(x, θ̇̇̇,θ) with the current ( θ̇̇̇,θ) state values being
implied for the missing arguments. Low-cost Newton–Euler recursive algorithms to carry
out this inverse dynamics computation are well known [9]. In addition, including any pre-
scribed motion degrees of freedom into the formulation are straightforward. With tracking

error ε
�
= θd − θ, a feedback term of the form Tfb =M(θ)[Kvε̇+ Kpε] is used to obtain

the overall actuator torque of the form

T
�
= Tff + Tfb + Tn =M(θ)[θ̈d +Kvε̇+Kpε] + C(θ, θ̇̇̇) + Tn

= TINV(θ̈d +Kvε̇+Kpε) + Tn. (3)
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Here Tn denotes a noise/disturbance term. When used in Eq. (1), this generalized torque
leads to the following error dynamics equation:

ε̈+Kvε̇+Kpε=−M−1
(θ)Tn. (4)

These error dynamics represent a linear, time-invariant system for which the Kv and Kp gain
terms can be easily chosen to meet the desired control objectives across the full configuration
space. While the use of such a model based feedforward torque computation is far more
expensive than just basic PID control, it offers robust and consistent performance across the
configuration space despite the highly nonlinear nature of the underlying dynamics.

It is noteworthy that in the ideal case of a perfect model and perfect sensing without noise,
we have ε≡ 0, and the feedforward force Tff by itself generates the desired motion for the
robotic system. Thus in theory, feedforward control by itself can do the job and feedback
control is not required. In practice, however, feedforward control is used in conjunction with
feedback control, with the latter’s role being to regulate residual errors that arise from mod-
eling and sensing imperfections that are present in reality. A priori knowledge and on-line
estimators are also often used to refine and improve the accuracy of the model parameters.
Note that the feedforward term reduces to the familiar gravity compensation term for the
static case.

As observed above, the feedforward term can be regarded as the actuation generalized
force that will lead to the exact desired generalized motion and forces for the ideal case
of perfect knowledge of the model and system state. Keeping this and our focus on the
feedforward term in mind, for simplicity of notation we will from now on simply use θ̈ for
the desired acceleration θ̈d, and T for Tff.

In the following sections we look at the feedforward problem, first for robotic systems
subject to kinematic motion constraints, then for under-actuated systems with passive de-
grees of freedom, and finally the general case of systems with both motion constraints and
passive degrees of freedom.

2.1 Feedforward with kinematic constraints

The dynamics of a robotic system subject to kinematic constraints can be obtained by mod-
ifying the unconstrained system dynamics in Eq. (1) to include the effect of the kinematic
constraints via Lagrange multipliers, λ ∈Rnc , as follows:2

(
M G∗

G 0

)[
θ̈

−λ

]
=

[
T − C

Ú

]
(5)

where nc denotes the dimension of the constraints. Here G(θ, t) ∈Rnc×N denotes the full
row rank constraint matrix that defines the kinematic constraints of the form

G(θ, t) θ̇̇̇=U(t) (6)

on the generalized velocity coordinates. Time differentiating this leads to the acceleration
level constraint equation

G(θ, t)θ̈= Ú(t) where Ú
�
= U̇̇̇(t) − Ġ̇̇ θ̇̇̇ ∈Rnc . (7)

2For a matrix A, the A∗ notation denotes its matrix transpose.
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The −G∗(θ, t)λ term in Eq. (5) represents the (implicitly defined) internal generalized con-
straint forces arising from the constraints.

Only desired accelerations θ̈ that satisfy Eq. (7) are feasible for the constrained system,
and we refer to such accelerations as being consistent with the constraints. For feedforward
control, we need to compute the T generalized forces that can be applied to generate desired
accelerations to drive the system along the desired trajectory. The following lemma provides
the required expression.

Lemma 1 Desired generalized accelerations θ̈d that are consistent with the constraints can
be achieved by generalized forces of the form

T
�
= TINV(θ̈d) +G∗x

(2)
=M(θ)θ̈d + C(θ, θ̇̇̇) +G∗x (8)

for arbitrary x ∈Rnc . Moreover, the Lagrange multiplier λ=−x.

Proof Substituting Eq. (8) into the top rows of Eq. (5) leads to

M(θ)(θ̈− θ̈d) =G∗
(λ+ x).

Choosing λ = −x together with the invertibility of M implies that θ̈ = θ̈d, i.e., the T de-
fined by Eq. (8) induces the desired accelerations in the system. The bottom row of Eq. (5)
is satisfied because of the assumption that θ̈d are consistent generalized accelerations. This
lemma provides the expression needed for computing the feedforward generalized force
needed to achieve desired system motion consistent with the constraints. With x = 0, even
T = TINV(θ̈d) satisfies Eq. (5) with λ = 0. The Lagrange multipliers λ serve as a free pa-
rameter for the feedforward T—in that all choices for λ lead to the θ̈d desired accelerations.
In other words, the specific choice of λ has no affect on the motion of the system. This allows
us to choose the λ value to control the internal squeeze forces within the system. This decou-
pling allows us to choose TINV(θ̈d) part of the feedforward control to generate the desired
motion, and to choose λ to meet additional system objectives such as the load-balancing of
generalized forces across the joints.

Thus, the feedforward strategy for such kinematically constrained systems is to choose
a desired generalized acceleration θ̈d that is consistent with the constraints and to compute
the feedforward generalized forces as

T = TINV(θ̈d) +G∗λ (9)

with λ either zero, or chosen to optimize some function of the internal forces. The loss of
motion degrees of freedom from the constraints is compensated by the ability to control the
same number of degrees of freedom in the force domain through a choice of λ. A possible
choice for λ is one that minimizes the weighted norm T∗WT for some symmetric positive
definite W weighting matrix. For this, it is easy to verify that the minimum norm is obtained
for

λ=
[(
G∗WG

)−1
G
]
TINV(θ̈d).

�

2.1.1 Partitioned control coordinates

An important requirement for using Eq. (9) to generate the feedforward accelerations is that
the desired θ̈ be consistent with the constraints. Due to the presence of the constraints, the
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motion of the system is restricted, and only some of the components of θ̈ are independent.
We select a subset as independent coordinates, θ̈r ∈ RN−nc , and the remainder set as de-
pendent coordinates, θ̈d ∈Rnc , so that

Gθ̈= [Gr, Gd]

[
θ̈r

θ̈d

]
= Ú =⇒ θ̈d =G−1

d [Ú −Grθ̈r]. (10)

The partitioning above is chosen such that the Gd ∈ Rnc×nc sub-matrix of G(θ, t) is in-
vertible. Such a choice is always possible due to the full row rank assumption for G. The
(N − nc) dimensional θ̈r vector in Eq. (10) is used to parametrize the subspace of gen-
eralized accelerations that are consistent with the constraints. Thus, we can use θ̈r as the
minimal, independent generalized acceleration coordinates for the system. Using Eq. (10),
we have

θ̈= θ̈q +Xθ̈r where θ̈q

�
=

[
0

G−1
d Ú

]
and X

�
=

[
I

−G−1
d Gr

]
∈RN×N−nc . (11)

Equation (11) gives us a way to recover the full generalized acceleration θ̈ vector given the
independent generalized acceleration vector θ̈r. Note that GX= 0.

2.2 Feedforward with passive dofs

For many robotic systems, not all degrees of freedom are actuated, i.e., some of the dofs are
passive. Such systems are referred to as under-actuated systems, with examples including
mobile wheeled and legged robots for whom the torso degrees of freedom are passive. Pas-
sive degrees of freedom may also arise from the task object and environment, such as doors,
door handles, etc. The characteristic of passive degrees of freedom is that their generalized
force values cannot be commanded, but are instead a known function of the system state.
While passive generalized forces are often zero, this is not a requirement.

Denoting the number of passive degrees of freedom by np, we partition the degrees of
freedom into active dofs θa ∈RN−np , and passive degrees of freedom θp ∈Rnp . Equation
(1) can be rewritten in the following partitioned form based on the active and passive degrees
of freedom: (

Maa Map

M∗
ap Mpp

)[
θ̈a

θ̈p

]
+

[
Ca

Cp

]
=

[
Ta

Tp

]
. (12)

The (unactuated) passive generalized forces Tp are a known function of the system state
(θ, θ̇̇̇). The passive degrees of freedom represent constraints in the generalized force space,
and are a dual to the kinematic constraints discussed earlier. Ta represents the feedforward
term for the under-actuated system since actuators can be commanded to only set this subset
of T. The form of Eq. (12) is not convenient to determine Ta because of its implicit form,
i.e., it contains a mix of the known and unknown quantities on both the left and right hand
sides of the equation. The following lemma provides an alternative expression where all the
unknown quantities are on the left hand side and can be used to evaluate Ta.

Lemma 2 Given a system with no closure constraints, a passive system with Tp passive
generalized forces, desired θ̈a active generalized acceleration can be obtained by applying
the Ta defined by the following expression:

[
Ta

θ̈p

]
=

(
Saa Sap

−S∗ap Spp

)[
θ̈a

Tp

]
+

[
Ca − SapCp

−SppCp

]
(13a)
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where

Saa
�
=Maa −MapM

−1
ppM

∗
ap, Sap

�
=MapM

−1
pp, Spp

�
=M−1

pp. (13b)

θ̈p denotes the generalized accelerations that are induced at the passive degrees of freedom.

Proof Equation (13a), (13b) is obtained by a straightforward matrix transformation of
Eq. (12) [5, 6]. For the desired θ̈a generalized acceleration at the active hinges, Eq. (13a)
provides us with a way to evaluate the necessary feedforward Ta active hinge forces as
well as the passive hinge accelerations θ̈p induced by this motion. Thus arbitrary values for
only the θ̈a active generalized acceleration subset of the full θ̈ generalized acceleration are
achievable while induced nonzero θ̈p passive accelerations are a (potentially undesirable)
side-effect for such passive systems. Techniques to manage (and perhaps minimize) the in-
duced θ̈p passive generalized accelerations, and to evaluate them efficiently without having
to explicitly compute the sub-matrices in Eq. (13b) are discussed in [5, 6]. In the next section
we will see that the presence of constraints can often allow us to even control the passive
accelerations. �

2.3 Feedforward with both constraints and passive dofs

More generally, robotic systems have both motion constraints as well as passive degrees of
freedom. Prominent examples of such systems are once again wheeled and legged mobile
robots. For these systems, the torso and chassis degrees of freedom are passive, while their
motion is constrained by the contact between the wheels/feet and the ground. Since the
system has both passive degrees of freedom as well as constraints, the techniques described
in Sects. 2.1 and 2.2 cannot be used directly. For a desired θ̈ (consistent with the motion
constraints), we partition the feedforward expression in Eq. (9) between the passive and
active degrees of freedom as follows:

G∗
=

[
G∗

a

G∗
p

]
λ and Tf

(θ̈) =

[
Tf
a(θ̈)

Tf
p(θ̈)

]
�
= TINV(θ̈). (14)

The G∗
a ∈ R(N−np)×nc and G∗

p ∈ Rnp×nc matrices represent a partitioning of G∗ based
on the active and passive degrees of freedom in the system.

The presence of constraints in a passive system turns out to be a mixed blessing. While it
is clear from our earlier discussion that arbitrary desired motions are not possible due to the
presence of passive degrees of freedom, it turns out consistent generalized accelerations are
often achievable due to the presence of the constraints. This is the subject of the following
lemma.

Lemma 3 The active generalized forces Ta needed to achieve desired consistent general-
ized accelerations θ̈ is given by

Ta = Tf
a(θ̈) −G∗

aλ (15)

where λ is a solution for the following equation:

G∗
pλ= Tp − Tf

p(θ̈). (16)
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Proof From Eq. (9), the general solution for the feedforward term for a constrained system
in partitioned form is given by

[
Ta

Tp

]
=

[
Tf
a(θ̈)

Tf
p(θ̈)

]
−

[
G∗

a

G∗
p

]
λ. (17)

The problem with using Eq. (17) is that Tp is defined a priori for the passive hinges and
cannot be changed. The solution is to use the lower row as shown in Eq. (16) to solve for λ
that is consistent with the passive degrees of freedom. Using this solution in the upper row
(as shown in Eq. (15)) provides the desired active generalized forces Ta. Using this lemma,
Tf can be readily evaluated given the consistent θ̈ desired accelerations.

A solution for Eq. (16) will exist when there are enough constraints, i.e., when nc � np

and G∗
p has full row rank. Assuming a solution for λ exists, the Ta feedforward term to meet

the full desired θ̈ motion accelerations in the presence of the Tp passive generalized forces
can be computed using the active half of Eq. (14). In contrast with the case of unconstrained
robotic systems with passive dofs, the presence of constraints allows us to attain the full
desired generalized accelerations including the passive generalized accelerations. Thus, in
the presence of passive degrees of freedom, motion constraints can generate constraint forces
that help to fill in for the missing actuation forces for the passive degrees of freedom. In
effect, the motion constraints provide a way to introduce actuators that are otherwise missing
for the passive degrees of freedom.

When there are not enough constraints, i.e., nc <np, a solution for Eq. (16) is not guar-
anteed. In this case not all accelerations consistent with the constraints are achievable. For
this case we have

T
(5)
=M(θ)(θ̈q +Xθ̈r) + C(θ, θ̇̇̇) −G∗

(θ, t)λ

(2), (14)
= M(θ)Xθ̈r + Tf

(θ̈q) −G∗λ. (18)

The passive degree of freedom rows give us the following condition on the feasible (θ̈r,λ)
values:

Tp
(12), (14)
=

[
M∗

ap, Mpp

]
Xθ̈r + Tf

p(θ̈q) −G∗
pλ

=⇒
([
M∗

ap, Mpp

]
X, −G∗

p

)[θ̈r

λ

]
= Tp − Tf

p(θ̈q). (19)

The (θ̈r,λ) solutions to this equation define the feasible motions and internal forces. These
solutions can be used to define the viable θ̈ using Eq. (11), followed by using Eq. (15)
to evaluate the Ta feedforward term. In summary, the steps involved in evaluating the Ta

generalized feedforward term are:

1. Compute desired generalized accelerations that are consistent with the motion con-
straints. This can be done by planning in the θ̈r independent generalized accelerations
space, and using Eq. (11) to obtain the full set of generalized accelerations θ̈.

2. Compute the Tf(θ̈) = TINV(θ̈) free generalized forces. This is the familiar uncon-
strained computed torque computation. As shown in Eq. (12), extract the Tf

p sub-vector
from this based on the passive degrees of freedom.

3. If full row rank conditions hold, solve G∗
pλ = Tp − Tf

p from Eq. (16) for λ. Else, use
Eq. (19) to solve for (θ̈r,λ). When there are multiple solutions, pick the solution that
optimizes other task objectives.
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4. Evaluate Ta = Tf
a − G∗

aλ from Eq. (15) to obtain the feedforward active generalized
forces.

The constraints only effect the desired consistent θ̈ generalized acceleration choice in step 1,
while the passive degrees of freedom primarily effect steps 3 and 4. While the passive de-
grees of freedom are defined by the physics of the robot and the scenario, the independent
generalized accelerations degrees of freedom are chosen based on motion planning conve-
nience. There is no requirement that they be the same or have any overlap. Equation (16)
defines the connection between them since Tf

p is determined by the passive degrees of free-
dom, while G is determined by the constraints. When there are no passive degrees of free-
dom, np = 0, λ can be arbitrary. When there are no constraints, nc = 0, and only θ̈ satisfy-
ing Eq. (19) can be exactly met. When there are neither constraints nor passive degrees of
freedom, we reduce to the standard computed torque feedforward term. Each of the steps is
low cost. The cost of the optional λ optimization in step 3, however, depends on the criteria
and technique employed.

An important special case that often occurs is when the kinematic constraints arise from
loop constraints, i.e., constraints on the spatial velocities of locations (e.g., end-effectors,
feet) on the robotic system. Let us assume that there are nb such loop closure nodes, with
Vb ∈R6nb denoting the stacked vector of spatial velocities of these nodes. The constraints
on these nodal spatial velocities are defined via a constraint matrix Q ∈Rnc×6nb such that
QVb =U(t). With Jb ∈R6nb×N denoting the Jacobian matrix for these nodes

Vb = Jb θ̇̇̇ ⇒ QJb θ̇̇̇=U(t) ⇒ G= QJb and

Gp = QJp where Jb = [Ja, Jp]. (20)

Thus G and Gp have a special structure for the important special case of loop constraints. In
the above Ja ∈R6nb×(N−np) and Jp ∈R6nb×np represent a partitioning of the columns of
the constraints node’s Jacobian matrix Jb in accordance with the active and passive degrees
of freedom. �

2.4 Unilateral constraints

Our feedforward control formulation thus far has assumed that all constraints are bilateral,
i.e., equality constraints. There are many scenarios, however, when some of the constraints
are unilateral, i.e., inequality constraints. Examples include contact constraints for legged
robots, hands grasping a task object, etc. While unilateral constraints do behave like bilat-
eral constraints when they are active, unlike bilateral constraints, unilateral constraints can
become inactive, and can even disappear (e.g., when contact is broken). For simplifying the
feedforward computation, as in [10], we use the strategy of treating the unilateral constraints
as bilateral constraints for the feedforward evaluation, but add a follow up check to verify
that the feedforward solution satisfies the conditions necessary for the unilateral constraints
to be active. For contact constraints, the condition for them to be active typically requires the
solution contact forces to lie within the friction cone to satisfy the no slip condition. While
expedient, a pitfall of this approach is that satisfaction of such consistency requirements
cannot be guaranteed. We refer the reader to [10] for a more detailed discussion of this topic
and useful techniques for helping meet the consistency requirement. An expensive, but rig-
orous alternative option is to append the inequality conditions for the unilateral constraints
to Eq. (16), and use the more expensive quadratic programming like techniques [11] to find,
and even optimize the solution to meet performance objectives.

Having developed our feedforward control formulation for the general case, we now
describe several robotics application scenarios that illustrate its use.
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3 Multi-arm manipulation

This scenario focuses on multi-arm manipulation, such as for multiple limbs or fingers ma-
nipulating, carrying or grasping a task object. The primary objective is to move the task
object in a desired trajectory, while meeting sub-objectives such as equitably balancing the
load across the arms, ensuring end-effector forces do not damage the task object, using
grasps to apply sufficient force to avoid object slippage, and avoiding overloading and satu-
ration of actuators.

Let m denote the number of arms grasping the task object. For simplicity we focus on
the dual-arm/rigid grasp case, i.e., m = 2, though the approach easily generalizes to the
multi-arm and non-rigid grasp case. The approach we describe also easily simplifies to the
case of a single arm, e.g., scenarios involving a single arm using a drill, or pushing a lever.

3.1 Rigid, unconstrained task object

We begin with the case where the task object is a rigid object, and the only constraints
on it are from the arm end-effectors that are moving it in free space. For this system, the
grasped rigid body has 6 passive degrees of freedom, and the loop constraints are from the
attachment/grasp points on the task object. The constraint nodes are the end-effector nodes
for each of the arms, and the attachment nodes on the grasped body. The system degrees
of freedom consist of the joint degrees of freedom for each of the arms together with the 6
passive degrees of freedom for the task object. Thus for the two arm and rigid grasp case

np = 6, nb = 4, nc = 6nb/2 = 12 and Tp = 0. (21)

Jb and Q are given by

Jb =

⎛
⎜⎜⎝

Jr 0 0
0 Jl 0
0 0 Jtr
0 0 Jtl

⎞
⎟⎟⎠ ∈R6nb×N, Q=

(
I 0 −I 0
0 I 0 −I

)
∈Rnc×6nb . (22)

Jr and Jl denote the end-effector Jacobians for the right and left arms, respectively, and Jtr
and Jtl denote the task object Jacobians for the right and left attachment points, respectively.
For a rigid task object, Jtr =φ∗

r and Jtl =φ∗
l , where the φr and φl 6 × 6 matrices denote

the rigid body transformation matrices from the right and left attachment points to the task
object’s reference frame. The Jp ∈ R6nb×np passive Jacobian from Eq. (20) corresponds
to the block column for the passive degrees of freedom in the right part of the Jb matrix in
Eq. (22). Note that we never need to compute the full Jb matrix, just the much smaller Jp
matrix. Since nc � np is satisfied, Eq. (15) holds, and we obtain the feedforward condition

Tf
p − Tp

(16), (21)
= −J∗pQ

∗λ
(22)
= −[Jtr, Jtl]λ. (23)

Note that Tf
p represents the D’Alembert spatial force needed at the task object’s reference

frame to move it along the desired motion trajectory. The λ solutions to Eq. (23) are the
end-effector forces that can provide this D’Alembert force, and can be used to evaluate the
Ta active feedforward forces using Eq. (15).
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3.2 Static case

For single or multiple arms statically holding a heavy object, the feedforward term reduces to
the joint torques needed to compensate for the gravitational load from the arms and the task
object. When there are multiple solutions, a solution to best meet secondary requirements
such as load balancing across the arms, or on the end-effector forces (e.g., to avoid damaging
the object, preventing slippage), or avoiding actuator saturation can be selected.

3.3 Constrained rigid task object

Now let us consider the more general case where there are additional bilateral constraints
on the task object. Examples of such scenarios include: two-handed polishing of a surface,
two handed opening of a circular valve or a spring-loaded door, turning the steering wheel
of a vehicle. Tp may be nonzero in some of these instances, such as when there are passive
forces from a spring-loaded door, or a resistance torque that needs to be overcome when
turning a valve or steering wheel. Two options, namely explicit and implicit, are available
for extending our approach to this situation and are described below.

3.3.1 Explicit constraints

The explicit option treats the task object as a floating object and appends the task object
constraints to the overall list of constraints. This option is more general and explicitly tracks
the task constraints. The explicit option may be preferable when the task object constraint is
a unilateral constraint, (e.g., when polishing, a positive force is required to maintain contact)
since it is easier to enforce such an inequality condition when solving for λ.

For the explicit option, both nb and nc increase due to additional task object constraints,
and additional rows need to be added to the constraint Jacobian Jb and additional columns
and rows need to added to Q in Eq. (22).

3.3.2 Implicit constraints

The implicit option treats the task object constraint as a hinge and the task object as a
branched articulated system. For this option, nb and nc remain unchanged, but np de-
creases to the number of degrees of freedom available to the task object from its “constraint”
hinge. In Eq. (22), the form of Jb remains unchanged except for a reduction in the number
of columns from the decrease in np, while Q remains unchanged. Due to its lower dimen-
sional impact, this approach is preferable to the explicit option, but can be used only if the
task object has a branched structure.

For both explicit and implicit options, the left half of Eq. (23) continues to hold, and
solutions to it can be used to compute the Ta feedforward values.

3.4 Articulated task object

As a further generalization, consider the case where the task object has internal articulation
degrees of freedom. Examples of such scenarios include: the use of a tool such as a two
handle trimmer, or pushing a wheelbarrow along the ground. Our approach continues to
apply, with the main change being that np increases due to the additional passive degrees of
freedom in the task object.
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As long as the condition nc � np continues to hold, we can use Eq. (23) to determine
the feedforward term that will even manage the internal posture of the task object. However,
when nc < np, we may not be able to meet all the motion objectives. For this case, the
achievable motions are governed by the more restrictive and complex condition in Eq. (19)—
which the motion planner needs to take into account when planning feasible motions.

4 Legged robots

We now look at feedforward computation for legged systems. We assume that the robot
consists of a torso with m legs. The 6 torso degrees of freedom are passive. The feet in
contact with the ground provide support for the robot. As discussed earlier, for feedforward
computation we treat the unilateral contact constraints for the feet as bilateral constraints.
Clearly, this assumption is valid only if the ground contact forces at the feet lie within the
friction cone so that there is no slippage or loss of contact.

4.1 Point contact

Assuming point contact between the feet and the ground, we have

np = 6, nb =m, nc = 3nb and Tp = 0. (24)

The constraint nodes Jacobian Jb ∈Rnc×6nb and Q are

Jb =

⎛
⎜⎜⎜⎝

J1 0 · · · · · · Jb1

0 J2 · · · · · · Jb2
...

...
. . .

...
...

0 0 · · · Jl Jbm

⎞
⎟⎟⎟⎠ ,

Q=

⎛
⎜⎜⎜⎝
[03, I3] 0 · · · 0

0 [03, I3] · · · 0
...

...
. . .

...
0 0 · · · [03, I3]

⎞
⎟⎟⎟⎠ ∈Rnc×6nb

(25)

Ji denotes the Jacobian for the ith leg to its foot, and Jbi denotes the Jacobian from the
torso degrees of freedom to the ith leg’s foot. Once again Jp is defined by the right block
column of Jb. While nc � np is satisfied for m � 2, i.e., for systems with two or more legs
in contact with the ground, the reality is that the J∗pQ

∗ matrix does not have full row rank
for m = 2, and three or more supporting legs are required to be in contact with the ground
for it to have full row rank and for solutions to Eq. (15) to be guaranteed to exist.

4.2 Area contact

For biped robots, the foot/ground contact represents an area contact. The only change for
this case is that the [03, I3] elements of Q in Eq. (25) need to be replaced with I6, and
nc = 6nb.

The convention for legged robots is to include the torso’s (passive) dofs within the inde-
pendent degrees of freedom which are used for motion planning. The kinematic constraints
are used to compute the dependent leg degree of freedom accelerations that effect the robot’s
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posture. The λ solution vector contains the interaction force between the foot and the ground
for each supporting leg. Since the ground contact constraint is in reality a unilateral con-
straint, for consistency with the bilateral assumption, it is necessary that the λ solution be
such that the contact constraints be active (i.e., the normal force components be positive),
and that there be no slippage (i.e., the contact forces lie within each foot’s friction cone).
Additional secondary objectives, such as load balancing, can be met by further refining the
solution choice. Overall, the planned generalized acceleration θ̈ can be used to select the
value of Tf

p, and the λ solution chosen to manage the ground contact forces and the loads on
the leg actuators.

4.3 Center of pressure

For legged systems, walking involves the making and breaking of contact between the feet
and the ground. Since the support legs are constantly changing, the sequencing and timing of
leg lift-off has to be done with care to avoid destabilizing the robot and keep it from falling.
The notions of center of pressure (COP) and zero moment point (ZMP) are useful for this
purpose [3]. The COP is defined as the point in the ground plane such that the torque moment
on the torso is a pure twist about the local normal and the pair of tipping components are
zero. For stability, motion is planned so that the COP lies within the support region defined
by the feet in contact with the ground. Since Tf

p ∈ R6 defines the spatial force on the torso
about its reference frame B, the pure twist condition on the COP point C takes the form

N(B) + l̃(C,B)F(B) =

⎡
⎣0

0
r

⎤
⎦ (26)

where N(B) and F(B) denote the moment and force 3-vector components of Tf
p, l(C,B) ∈

R3 denotes the vector from C to B and r is the moment on the torso about the normal. The
0 values on the right side for the x and y components of the torso moment correspond to
the pure twist requirement. The above equation has rank 2, and its top 2 rows can be used
to solve for the x and y components of l(C,B) which locate the COP on the ground plane,
while the z component represents the known height of B above the ground plane. Thus we
need to solve

Nx(B) = −lzFy(B) + lyFz(B) and Ny(B) = lzFx(B) − lxFz(B) (27)

for lx and ly. The requirement that the COP lie within the support area places restrictions
on the permissible Tf

p, which in turn restricts the achievable independent θ̈ generalized
accelerations.

While the full equations of motion are needed to compute Tf
p for the desired θ̈, a common

simplifying assumption for legged robots is to use an inverted pendulum model as a basis
for the Tf

p ≈M(B)θ̈(B) + C(θ, 0) approximation, where M(B) ∈ R6×6 and θ̈(B) ∈ R6 de-
note the spatial inertia and the desired spatial acceleration for just the torso. The advantage
of this approximation is that the torso’s spatial inertia is constant and the full unconstrained
inverse dynamics computation is avoided. This approximation in essence assumes that the
contribution of the legs to the system spatial inertia and to the torso inertial forces is negli-
gible, and that Coriolis and gyroscopic force contributions can also be neglected. Thus only
the torso’s D’Alembert force and gravitational forces are included. These assumptions are
entirely optional and only used to reduce the computational burden.
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Fig. 2 Block diagram of the control architecture utilizing feedforward control

Note that our feedforward approach is valid even when the ground plane is not level, since
the pure twist requirement in Eq. (27) is about the local normal. The primary impact of this
is that the gravitational forces contribution has to be rotated into the local ground plane
frame. This approach remains valid even when the torso has additional degrees of freedom
and arms. During manipulation, any additional constraints on the arms can be handled as
described in Sect. 3 and used to augment the constraint Jacobian and the other matrices.
Again, generalizing to multiple robots performing a task in coordination is straightforward.

4.4 Wheeled robots

The feedforward terms for wheeled platforms with arms can also be evaluated by our change,
especially where the mobility and manipulation degrees of freedom need to be coordinated
during task execution. The primary difference from the legged instance is that the constraint
between wheels and the ground differs from that between feet and the ground, and requires
a wheel constraint version of Q in Eq. (25). Also, the COP method is not relevant here since
foot placement is not an issue for wheeled robots.

5 Simulation examples

We have implemented a control architecture shown in Fig. 2 to illustrate the use of our
generalized feedforward control in simulation. The control architecture contains modules
responsible for motion planning and trajectory generation, feedforward control, and feed-
back control. The task scenario defines the passive degrees of freedom and constraints on
the robot. This information is used by the motion planner to design trajectories for all the
robot joints that are consistent with the constraints for the task. This module is also respon-
sible for defining the passive degrees of freedom and active constraints during the execution
of the trajectory since these can change during the task execution.
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While the motion planning’s algorithms are tailored to generate motion trajectories spe-
cific to each scenario and activity type, our feedforward module is generic and remains
unchanged across widely varying tasks. The feedforward module only requires the current
state of the robot, the active constraints, the passive degrees of freedom, and desired joint
accelerations at any time instant to compute the feedforward generalized force needed for
all the active joints. The feedforward control computation uses the full dynamics model of
the system for the generalized feedforward compensation techniques described in this paper.

While the feedforward control module takes into account the system level state and de-
sired motion of the robot system, the feedback control module consists of a bank of decou-
pled, low-level proportional derivative feedback controllers for each of the actuated joints.
The gains for each of these joint controllers are set as needed for tracking the desired trajec-
tory for the joint.

We demonstrate the versatility of our feedforward formulation by using this control ar-
chitecture to execute a variety of robot tasks in simulation. The robot tasks we chose are from
the Defense Advanced Research Projects Agency Robotics Challenge (DRC) competition
and consisted of: (a) vehicle driving, (b) clearing debris, (c) climbing a ladder, (d) traversing
uneven terrain, (e) opening a door, (f) making a hole in a wall, (g) opening a valve, and
(h) mating a hose. Not only do these tasks require the control of challenging robot and task
dynamics, but also the execution of a variety of different activities including legged mobility,
single and multi-arm manipulation, combined mobility and manipulation, and manipulation
of constrained objects.

The robot used for simulating the execution of these tasks is based on the Jet Propulsion
Laboratory’s (JPL) RoboSimian robot [4] shown in Fig. 3. This robot has four 7 degree of
freedom limbs, with each limb having a hand with three fingers. Overall the robot has 70
degrees of freedom. The dexterous limbs are designed to be used as legs for walking, or as
manipulators as needed by the task.

The following sections provide the description of the use of the constraints and passive
degree of freedom models used by the feedforward module for each of these simulated tasks.
While the limb joints have actuators, the 6 torso degrees of freedom are unactuated and
represent passive degrees of freedom that are taken into account by the feedforward module
for each of the tasks. The generalized forces associated with the torso’s passive degrees of
freedom are zero. As we will see, some of the tasks introduce additional passive degrees of
freedom that are also handled by the feedforward module.

The dynamics model as well as the closed-loop control modules, were simulated us-
ing JPL’s DARTS [1] minimal coordinates, recursive dynamics simulation software that is
based on the spatial operator algebra methodology [5]. While unilateral ground contact con-
straints for the stance legs were modeled as bilateral constraints for the feedforward control
computation, the simulation model made no such assumption and treated them as unilateral
constraints. Despite these substantial differences between the feedforward and simulation
models, the feedforward approach successfully executed all of these tasks in simulation.

5.1 Driving task

The first task (a) we describe is the vehicle driving task illustrated in Fig. 3. This task re-
quires the robot to turn the steering wheel of a vehicle while seated. For the feedforward
computation, we treat the robot torso as being fixed to the seat via a constraint. The limbs
below the vehicle’s dash are free to move and perform actions such as gas pedal depression.
The limbs above the dash alternate between free space motion to approach and grasp the
steering wheel, and constrained motion when turning the steering wheel. The steering wheel
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Fig. 3 The passive degrees of
freedom and constraints for the
driving task

is modeled as a passive single degree of freedom joint that can rotate about its axis with a
nonzero resistance force that needs to be applied to turn it. This is an example of a task that
introduces passive degrees of freedom in addition to the 6 passive degrees of freedom from
the robot’s torso. Moreover, the generalized force associated with the steering wheel passive
degree of freedom is nonzero.

The motion planning module generates the required joint trajectories for the limbs for the
free space motion to approach the steering wheel. Once a limb grasps the steering wheel,
the limb is modeled as having a constraint between the limb and the steering rim that allows
only 1 degree of freedom rotation of the hand about the rim. The input to the motion plan-
ning module is the desired motion trajectory of the steering wheel, which is used to compute
the desired motion of the joints in the limb grasping the rim. The passive degrees of freedom
and constraints are different between the approach to grasp phase, and the steering wheel
turn phases. The motion planning module monitors and updates the passive degrees of free-
dom and constraints data during the task execution so that the feedforward module uses the
correct information at each time instant.

5.2 Debris clearing task

The next simulated task (b) is the debris clearing task. This task consists of the robot moving
a heavy object in free space using one of its limbs while the other 3 limbs provide support
for the robot. For feedforward computation, the robot’s three stance limbs are constrained
to the ground with revolute joints where the single degree of freedom is the rotation about
an axis normal to the ground plane. The manipulator limb is free to move in space with the
debris object fixed to the end effector. This task requires knowledge of the debris’ mass in
order to properly compensate for its load during free space motion.

Task (f) requires using a saw to cut a hole in the wall. Its feedforward computation is
similar to the debris clearing task in that a known force needs to be applied by the free arm
end effector on the saw. The hose mating task (h) is also similar to the debris clearing task
where the hose replaces the debris in the manipulation arm for feedforward control purposes.

5.3 Ladder climbing task

The ladder climbing task (c) shown in Fig. 4 requires the robot to climb a ladder with rungs.
This task is a mobility task where at least 3 of the robot’s limbs are constrained to a fixed
object (such as the ladder in this case) for stability. The supporting limbs are said to be in
stance, while the remaining limb, that can move in free space, is referred as the swing limb.
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Fig. 4 The passive degrees of
freedom and constraints for the
ladder climbing task

Fig. 5 The passive degrees of freedom and constraints for the walking task.

The limbs alternate between stance and swing states in order to propel the robot. For the
ladder task feedforward computation, we represent constraints between the robot and ladder
as revolute joint constraints where the single degree of freedom is rotation about the ladder
rung axis. As the robot climbs the ladder, the limbs in sequence release their rung and move
in free space to another rung on the ladder. As in the case of the driving task, the constraints
change during the execution of the climbing task.

5.4 Walking task

Task (d) requires the robot to walk across terrain. This mobility task works in much the
same way as ladder climbing and is illustrated in Fig. 5. For feedforward control, the most
important difference between the two tasks is the way the stance limb constraints are rep-
resented. Both use revolute joint constraints, however, while the ladder constraint allows
rotation about the rung axis, the walking constraint allows rotation about the axis normal
to the ground plane. Otherwise, like the ladder climb, walking is achieved by having limbs
alternately release their ground constraints and move in free space to the next limb location.
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Fig. 6 The Atlas biped robot

5.5 Door opening task

Task (e) requires opening a door. For the feedforward control the door revolute degree of
freedom represents an additional passive degree of freedom. For feedforward control, the
robot is constrained to the ground with three stance limbs in the same manner as the debris
removal task. However, the remaining limb is not free but instead is fixed to the door handle,
thus forming a closed chain with the rest of the robot and ground. The motion trajectory of
the door hinge is used to determine the constrained motion of this limb.

5.6 Valve turning task

The valve turning task (g) is another manipulation task that can be done using a single
arm similar to opening a door. However, to demonstrate the capabilities of the feedforward
scheme for coordinated control, we use two limbs instead of just one to turn the valve—
especially since a significant torque is required to overcome the valve’s resistance. For the
feedforward model, two stance limbs are constrained to the ground in a similar fashion as
for opening the door. The valve’s axis of rotation represents an additional passive degree
of freedom. The two manipulation limbs grasping the valve rim contribute two additional
constraints. The two manipulation limbs form a closed chain with the valve and the robot
torso and thus a coordinated effort from both arms is required to turn the valve. The motion
trajectory of the valve angle is used to generate the constrained joint trajectories for the
manipulation limbs.

5.7 Bipedal walking

As a final note, we also used the generalized feedforward control architecture to simulate
walking for a Boston Dynamics 36-dof Atlas biped robot [8] shown in Fig. 6. Biped walking
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for the Atlas consists of a repeating sequence of transitions from dual support, to single leg
support during leg swing phase, and back to dual leg support. As in the RoboSimian case,
the constraint Jacobian must be updated at each such transition to handle the limbs coming
in and out of ground contact. Unlike the RoboSimian case, the ground contact constraints
were defined as fixed, area constraints instead of revolute constraints in order to account for
the larger surface area of the Boston Dynamics Atlas feet.

6 Conclusions

In this research we describe a general feedforward control framework that applies to a broad
class of robotic mobility and manipulation scenarios where robots can be subject to motion
constraints and under-actuated degrees of freedom. The feedforward evaluation procedure
includes at its heart the well known computed torque feedforward evaluation for uncon-
strained systems, and provides a general purpose approach to include the motion constraints
to define admissible motions, and to select feedforward solutions that are compatible with
the passive degrees of freedom. We derive conditions for the existence of feedforward so-
lutions that meet the control objectives. Options to tune the solution to meet secondary
objectives are also provided. Our approach is not only versatile and general, but has reduced
computational cost for embedded control use. The computational benefits arise from the
exploitation of the low cost inverse dynamics algorithms for TINV(x, θ̇̇̇,θ) for the feedfor-
ward computations, and avoiding the need for more expensive quantities such as the mass
matrix and the operational space matrix found in other approaches. Multiple representa-
tive scenarios involving multi-arm manipulation and mobile robots are used to illustrate the
application of the feedforward procedure.

We demonstrate in simulation how the feedforward control architecture can be used to
handle a large variety of mobility and manipulation tasks. The different scenarios only re-
quire the appropriate modeling of the constraints and passive degrees of freedom and avoid
the need for custom control schemes for each task. Besides allowing the control framework
to easily handle a variety of tasks, the structure-based nature allows it to accommodate vari-
ability within the tasks. Such generality is important since task objectives and constraints
are ever changing during task execution, and a framework for accommodating such changes
is essential.
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