
Acta Astronautica 138 (2017) 512–529
Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier .com/locate/actaastro
Modeling of Active Tether System concepts for planetary exploration

Marco B. Quadrelli *, Masahiro Ono, Abhinandan Jain

Mobility and Robotic Systems Section, Autonomous Systems Division, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA
91109, United States
A B S T R A C T

This paper summarizes an approach for modeling, simulation, and control of tethered systems in which the tether is actively controlled. Various aspects of the system
model are described, including tether dynamics, end-effector dynamics, contact interaction and the model of the active tether material. We consider three scenarios: a
tether made of an electrically switchable material for small body sampling, a tether for close-proximity operations such as capture and grappling, and a tether
harpooning to a small body for sample capture, fly-by, rendezvous, and/or landing.
1. Introduction

This paper summarizes an approach for modeling, simulation, and
control of tethered systems in which the tether is actively controlled.
Various aspects of the system model are described, including tether dy-
namics, end-effector dynamics, contact interaction and the model of the
active tether material. We consider three scenarios (Fig. 1): a tether made
of an electrically switchable material for small body sampling, a tether
for close-proximity operations such as capture and grappling, and a
tether harpooning to a small body for sample capture or planetary fly-by.

Extreme planetary environments represent the next frontier for in situ
robotic space exploration. Missions for exploration would be followed by
robotic missions for exploitation, and by human missions. All these
missions would have one common problem: highly irregular topography,
heterogeneous surface properties (soft, hard), harsh, extreme environ-
ments, where temperature, radiation, and other factors make the mis-
sions inconceivable at present. Also, asset delivery and sample capture
and return could be at the heart of several emerging potential missions to
small bodies, such as asteroids and comets, and to the surface of large
bodies, such as Titan. Furthermore, the diverse geologic sites would
require versatile in situ science that can adapt to the local geology and
environmental conditions. An Active Tether System (ATS) would show
much promise to enable new types of mission concepts with lower risk
sampling operations (being far away from the surface), higher rate of
science data quality and return (samples with stratigraphy, sub-surface
samples), and much more agility (sampling operations can be repeated
multiple times at multiple locations without landing). In a multistage
architecture, the ATS would become highly scalable, and would repre-
sent an advantage over existing asset deployment and potential sample
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capture mission operations because it would have the potential of further
decoupling the end-effector operation from the spacecraft operation
during the target interaction phase, thus enabling many new mission
concepts. An ATS is different than an electrodynamic tether system as
typically considered in space propulsion in that the ATS uses coupling
between electromagnetism and mechanics to make the tether into an
intelligent material system. One example of application could be the
following: imagine approaching an asteroid and being able to reach the
surface to deliver an asset or to collect a sample without ever having to
land. By phase-transitioning its material characteristics in a multi-
segmented boom, a long appendage (up to a few hundred meters long)
would change its shape and its compliance actively to conform to any
surface irregularity in any body of the Solar System. By eliminating
complex proximity operations near the surface, this intelligent system
could become the newway to interact at-a-distance with primitive bodies
and potentially bring pristine soil samples back to Earth. We now
describe the three scenarios considered in this paper.

Phase-transition tether: In this scenario, we investigate the modeling
aspects of a tether system, which, through changing equilibrium phases
in the material, is able to change its compliance in response to different
external stimuli and collects a sample from the surface of a planetary
body (Fig. 2). The paper approaches this complex problem sequentially.
The first step is the static and dynamic characterization of the component
behavior of an ATS element. Some phase-transitioning materials that are
considered are piezoelectric materials, electro-rheological materials,
electro-active polymers, photo-strictive and magneto-strictive materials.
The second step is to investigate the system-level behavior under closed
loop control, which is dependent on the scenario of application, i.e. the
large scale dynamics and control aspects with an eye to performance of
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Fig. 1. The three cases considered in this paper for an active tether: (a) vehicle rendezvous and docking; (b) harpooning and sling-shot from a small body; (c) surface sample collection.

Fig. 2. Active tether used for adaptive small body sampling.
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the space system in a relevant mission context. To achieve the full po-
tential of distributed actuation, it is necessary to develop models that
characterize the hysteretic nonlinearities inherent in the constituent
materials, as well a distributed sensing methodology. We have investi-
gated models that quantify the nonlinearities and hysteresis inherent to
phase transition, each in formulations suitable for subsequent control
design. These models involve first-order, nonlinear ordinary differential
equations and require few parameters that are readily identifiable from
measurements, hence we have selected to use these differential models in
our analysis. To investigate the implications of using this concept, a
multibody dynamics simulation of the system behavior of the entire
vehicle during sample captures has been developed and tested in a
simulation environment.

Harpooning and sling-shot tether: NASA is interested in designing a
spacecraft capable of visiting a comet, performing experiments, and then
returning safely. Certain periods of this mission would require a space-
craft to remain stationary relative to the NEO (Fig. 3, taken from [28]).
Such situations would require an anchoring mechanism that is compact,
easy to deploy and upon mission completion, easily removed. The design
philosophy used in the project relies on the simulation capability of a
multibody dynamics physics engine. On Earth it is difficult to create low
gravity conditions and testing in low gravity environments, whether
artificial or in space is costly and therefore not feasible. Through simu-
lation, gravity can be controlled with great accuracy, making it ideally
suited to analyze the problem at hand. Effective NEO exploration requires
vehicle/astronaut anchoring due to extremely low gravity. Simulation
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and testing must be carried out with implications on system/mission
design, system verification and validation, design of combined vehicle/
human/robot teams, design of proximity operations such as landing,
tethered operations, surface mobility, drilling, sub-surface sampling. The
mission concept (Fig. 3, taken from [28]) would involve several phases:
deployment (fire harpoon from 100 mþ from spacecraft (S/C)); sampler
stabilization: (sampler would be stabilized during flight to surface via
tension in tether); sampling: (sampler would impact, sample, close and
eject sample canister); retrieval: (S/C would reel in tether while S/C
thrusts, possibly with pendulum cancelation maneuver); sample mea-
surement: (potentially compute from balance of forces given the space-
craft acceleration); canister capture: (pull back into chamber it was
released from); canister transfer to SRC: (S/C arm would grasp canister
and transfer to SRC). The benefits of this approach would primarily be
low mission risk and capability of providing desirable science data. In
regard to risk, the spacecraft would stay far from comet, and would never
be on collision trajectory with comet. It would rely on a passive sampler,
with the canister retrieval constrained to tether. The canister capture
would be straightforward, and the canister transfer back to the spacecraft
would also be straightforward. In terms of the desirable science, this
approach would allow for sampling subsurface to 10 cm, maintaining
stratigraphy, would allow multiple samples from different comet loca-
tions, and would minimize sample contamination. Once the spacecraft
points the sampler at the target, then the sampler would simply be
released toward the sample target. The tether spool would be on the
sampler, and would be pulled out with constant tension, although
another design option for active tether tension control would have the
spool on the spacecraft instead. The tether tension would stabilize the
sampler during flight to surface. Since the spacecraft could be at a stand-
off distance, the tether could be long. It is assumed that a spacecraft
would stand off from a cometary nucleus by hundreds or even thousands
of meters, and fire a harpoon-type sample capture device into the comet.
The simulation and experiments of the retrieving dynamics and control of
tethered sampling systems for Small Body Exploration has been discussed
in [17,18]. As an example of the tether sling-shot maneuver, we describe
the Comet Hitchhiker concept (Fig. 4). The Comet Hitchhiker [21]
concept would essentially perform momentum exchange with a target
body using an extendable/retrievable tether. The momentum exchange
would be performed in two ways: (i) to kill the relative velocity with the
target and (ii) to accelerate the spacecraft in relative to the target. We call
the former a space hitchhike maneuver, while the latter an inverse space
hitchhike maneuver. The key idea of the Comet Hitchhiker concept is to
use extendable/retrievable tether, which enables: (1) to control the
spacecraft acceleration within a tolerable level, i.e. below the tensile
strength of the tether and end-effector material, (2) to harvest the kinetic
energy of the target body, and most importantly, (3) to change or
completely kill the relative velocity with the target, hence enabling
rendezvous and landing. First, the spacecraft harpoons a target as it



Fig. 3. Mission scenario.

Fig. 4. Space hitchhike maneuver for small body rendezvous and landing.
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makes a close flyby in order to attach a tether to the target. Then, as the
target moves away, it reels out the tether while applying regenerative
brake to give itself a moderate ð< 5gÞ acceleration. If there is a sufficient
length of tether, the spacecraft can eventually make the relative velocity
sufficiently small so that it is captured by the weak gravity of the target.
At the end of the hitchhike maneuver, the spacecraft is at a significant
distance from the target – typically 10–1000 km, depending on the initial
relative velocity. However, re-approaching to the target is very easy
because the relative velocity has already been killed. The spacecraft can
simply retrieve the tether slowly to come closer to the target, and possibly
land on it. Fig. 4 shows a sample sequence of a hitchhike maneuver. This
idea can be intuitively understood by the analogy of fishing. Imagine a
fisherman on a small boat trying to catch a big fish that runs at a high
relative speed. Once the fish is on a hook, the experienced fisherman
would let the line go while applying a moderate tension on it, instead of
holding it tightly. If the line has a sufficient length, the boat can even-
tually catch up with the fish with moderate acceleration. In addition, by
applying regenerative brake, a Comet Hitchhiker can harvest energy
from the target body. Assuming 25% efficiency of a regenerative brake, a
2-ton Comet Hitchhiker can produce ~25 GJ of energy, which is suffi-
cient to drive an instrument with 1 kW power consumption over 290
days. If future storage devices can achieve the energy density of gasoline,
25 GJ can be stored in 500 kg of mass, making it a potential energy
source in the outer Solar System. Our concept brings important advan-
tages over a related concept of tether-based flyby [22], which uses a fixed
length of tether in order to change the direction of the relative velocity
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like a gravity assist. This concept cannot be used for landing and orbit
insertion because it does not reduce the relative speed. The Comet
Hitchhiker concept is distinct in that it reels out a tether while applying
regenerative brake force to accelerate itself. This approach allows the
spacecraft to match its velocity with that of the target, and as a result,
enables soft landings and orbit insertion. An inverse hitchhiker maneuver
is performed by using the stored energy in order to make a departure
from the target. First, when the hitchhiker is on the surface or in orbit, it
attaches a tether to the target. Next, it slowly moves away from the target
while deploying the tether. Then, it uses the stored energy to quickly
retrieve the tether and accelerate itself. Finally, it detaches the tether.

Grappling tether: Finally, as a model of a grappling tether, we consider
a tethered system that is capable of being actuated in such a way as to
rendezvous and dock with the target body, which could be a piece of
orbital debris, or another spacecraft. In this scenario, the spacecraft
would first need to detect the target relative to itself, then plan an
approach trajectory for the end effector, eject the ATS towards the target,
wrap and lock around the target, then apply the necessarily distributed
control actuation to retrieve or reposition the target.

This paper is organized as follows. First, we derive the equations of
motion of a multibody system with contacts and collisions. Second, we
derive the kinematics and kinetics of a space tethered system in orbit.
Third, we focus on the tether material constitutive law, allowing for
phase-transitioning behavior. Fourth, we describe the interaction of the
end-effector at the end of the tether with the contacting surface. Finally,
we discuss the application cases, studied with simulation.
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2. Modeling of multibody tethered system with contact
interactions

In this section, we follow the notation used in [11,3]. Fig. 5 shows the
kinematic topology of the multibody chain for a tethered system con-
tacting another body. Body 0 is the free-flying spacecraft. Bodies 1–3
represent the tether. Bodies 4 and 5 represent appendages, such the solar
panels hinged at the root via a spring tuned to the first fundamental
frequency of oscillation. Body 6 represents the free-flying small body.

In the past two decades, researchers have been developing comple-
mentarity based formulations to solve contact and collision dynamics
problems. A recent review is given in [19], in which the authors compare
and contrast the linear and nonlinear complementarity approaches to
solving contact dynamics problems. Complementarity based methods are
an alternative to classical penalty based methods that rely on a virtual
spring–damper model to apply restoring forces at the point of deepest
penetration between two bodies in contact. Penalty methods notoriously
suffer from oscillatory effects and become numerically unstable when
bodies collide with a high velocity. Small time steps and excessively
damped implicit integrators used to counter this make the method slow
and computationally expensive. Complementarity based methods, on the
other hand, assume that the bodies are truly rigid and compute contact
forces at each time step to prevent inter-penetration. Complementarity
methods use impulsive dynamics to handle collision and contact in-
teractions. They avoid the small time step and stiffening issues encoun-
tered in penalty methods by impulsively stepping over non-smooth
events. There are two variants of the complementarity formulation – the
linear complementarity problem (LCP) formulation and the nonlinear
complementarity problem (NCP) formulation. In the LCP formulation,
the dynamics is cast as a linear complementarity problem by discretizing
the friction cone using a polyhedral approximation. On the other hand,
no such approximations are made in the NCP case leading to an exact
modeling of the friction cone.

The state of a mechanical system with nb rigid bodies in three
dimensional space can be represented by the generalized positions q ¼
½rT1 ; ϵT1 ;…; rTnb ; ϵ

T
nb �

T 2 R7nb and their time derivatives _q, where ri is the
Fig. 5. Multibody dynamics model of contac
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absolute position of the center of mass of the i-th body and the quaternion
ϵi expresses its rotation. One can also introduce the generalized velocities
v ¼ ½rT1 ;ωT

1 ;…; rTnb ;ω
T
nb �

T 2 R7nb , directly related to _q by means of the
linear mapping _q ¼ LðqÞv that transforms each angular velocity
(expressed in the local coordinates of the body) into the corresponding
quaternion derivative _ϵi by means of the linear algebra formula
_ϵi ¼ 1

2GðϵiÞωi, with

GðϵiÞ ¼
24þϵ1 þϵ0 �ϵ3 þϵ2
þϵ2 þϵ3 þϵ0 �ϵ1
þϵ3 �ϵ2 þϵ1 þϵ0

35 (1)

Mechanical constraints, such as revolute or prismatic joints, can exist
between the parts: they translate into algebraic equations that constrain
the relative position of pairs of bodies. Assuming that a set of constraints
is present in the system, for all i 2 B they lead to the scalar equations
Ψ iðq; tÞ ¼ 0. To ensure that constraints are not violated in terms of ve-
locities, one must also satisfy the first derivative of the constraint equa-
tions, that is ∇ΨT

i vþ ∂Ψ i
∂t ¼ 0 with the Jacobian matrix ∇qΦi ¼ ½∂Ψ i=∂q�T

and ∂ΦT
i ¼ ∇qΨ

T
i LðqÞ. Note that the term ∂Ψ i

∂t is zero for all scleronomic
constraints, but it might be nonzero for constraints that impose some
trajectory or motion law, such as in case of motors and actuators. If
contacts between rigid bodies must be taken into consideration, colliding
shapes must be defined for each body, and a collision detection algorithm
must be used to provide a set of pairs of contact points for bodies whose
shapes are near enough, so that a set A of inequalities can be used to
concisely express the non-penetration condition between the volumes of
the shapes, i.e. for all i 2 A , ΦðqÞ � 0. Note that for curved convex
shapes, such as spheres and ellipsoids, there is a unique pair of contact
points, that is the pair of closest points on their surfaces, but in case of
faceted or non-convex shapes there might be multiple pairs of contact
points, whose definition is not always trivial and whose set may be
discontinuous. Given two bodies in contact A ;B , let ni be the normal at
the contact pointing toward the exterior of body A , and let ui and wi be
two vectors in the contact plane such that ni;ui;wi 2 R3 are mutually
orthogonal vectors: when a contact i is active, that is for ΦðqÞ ¼ 0, the
t event with tethered spacecraft system.
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frictional contact force acts on the system by means of multipliers
γ̂i;n � 0, γ̂i;u, and γ̂i;w, that is the normal component of the contact force
acting on body B is Fi;N ¼ γ̂i;nni and the tangential component is Fi;T ¼
γ̂i;uui þ γ̂i;wwi (for body B these forces have the opposite sign).

Also, according to the Coulomb friction model, in case of nonzero
relative tangential speed vi;T the direction of the tangential contact force
is aligned with vi;T and it is proportional to the normal force as k Fi;T k¼
μi;d k Fi;N k by means of the dynamic friction coefficient μi;d 2 Rþ. How-
ever, in case of null tangential speed, the strength of the tangential force
is limited by the inequality k Fi;T k� μi;s k Fi;N k using a static friction
coefficient μi;s 2 Rþ, and its direction is one of the infinite tangents to the
surface. In our model we assume that μi;s and μi;d have the same value that
we will write μi for simplicity, so the above mentioned Coulomb model
can be stated succinctly as follows:

γ̂i;n � 0; ΦiðqÞ � 0; ΦiðqÞγ̂i;n ¼ 0 (2)

The first condition states that the friction force is always within the
friction cone, i.e.

μiγ̂i;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̂2i;u þ γ̂2i;w

q
(3)

The second condition states that the friction force and the velocity be-
tween two contacting bodies are collinear and of opposite direction, i.e.:

〈Fi;T ;vi;T〉 ¼ � k Fi;T kk vi;T k (4)

The third condition, which captures the stick-slip transition, is:

k vi;T k ðμiγ̂i;n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ̂2i;u þ γ̂2i;w

q
Þ (5)

Note that the condition γ̂i;n � 0;ΦiðqÞ � 0;ΦiðqÞγ̂i;n ¼ 0 can also be
written as a complementarity constraint: γ̂i;n � 0;ΦiðqÞ � 0, see [31].
This model can also be interpreted as the Karush–Kuhn–Tucker first order
conditions of an equivalent maximum dissipation principle [20], which
can be written as:

i 2 A : γ̂i;n � 0;⊥ΦiðqÞ
� 0; ðγ̂i;u; γ̂i;wÞ argmin

μi γ̂i;n�
ffiffiffiffiffiffiffiffiffiffiffiffi
γ̂2i;uþγ̂2i;w

p vTðγ̂i;uDi;u þ γ̂i;wDi;wÞÞ (6)

Finally, we must also consider the effect of external forces with the
vector of generalized forces fðt;q;vÞ 2 R6nb , that might contain gyro-
scopic terms, gravitational effects, forces exerted by springs or dampers,
torques applied by motors, and so on. Considering the effects of both the
set A of frictional contacts and the set B of bilateral constraints, the
system cannot be reduced neither to an ordinary differential equation
(ODE) of the type _v ¼ fðt;q;vÞ nor to a differential-algebraic equation
(DAE), because of the inequalities and because of the complementarity
constraints, that rather turn the system into a differential inclusion of the
type _v 2 F ðt;q;vÞ, where F is a set-valued multifunction. In fact, the
time evolution of the dynamical system is governed by the following
differential variational inequality (DVI):8>>>>>>>>><>>>>>>>>>:

_q ¼ LðqÞv
M _v ¼ fðt;q;vÞ þ P

i2B
γ̂i;n∇Ψ i þ

X
i2A

ðγ̂i;nDi;n þ γ̂i;uDi;u þ γ̂i;wDi;wÞÞ
i 2 B : Ψ iðq; tÞ ¼ 0
i 2 A : γ̂i;n � 0;⊥ΦiðqÞ � 0;
ðγ̂i;u; γ̂i;wÞ argmin

μi γ̂i;n�
ffiffiffiffiffiffiffiffiffiffiffiffi
γ̂2i;uþγ̂2i;w

p vTðγ̂i;uDi;u þ γ̂i;wDi;wÞÞ
(7)

Here, to express the contact forces in generalized coordinates, we
used the tangent space generators Di ¼ ½Di;n;Diu;Di;w� 2 R6nb�3 that are
sparse and are defined given a pair of contacting bodies A and B as:
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DT
i ¼

"
0 … �AT

i;p þAT
i;pAA

esi;A 0 …

0 … þAT
i;p �AT

i;pAB
esi;B 0 …

#
(8)

where we use Ai;p ¼ ½ui; vi;wi� as the R3�3 matrix of the local coordinates
of the i-th contact, and introduce the vectors si;A and si;B to represent the
positions of the contact points expressed in body coordinates. A super-
script tilde denotes a skew-symmetric operator. The DVI in (2) can be
solved by time-stepping methods: in detail, the discretization requires
the solution of a complementarity problem at each time step, and it has
been demonstrated that it converges to the solution to the original dif-
ferential inclusion for h→0 [31]. Moreover, the differential inclusion can
be solved in terms of vector measures: forces can be impulsive and ve-
locities can have discontinuities, thus supporting also the case of impacts
and giving a weak solution to otherwise unsolvable situations like in the
Painlev paradox [31]. This formulation has been used in the modeling
and simulation of anchoring processes in granular media, described
in [27].

3. Modeling of tethered system kinematics and kinetics

We follow Fig. 6, and the discussion presented in [25]. The motion of
the active tethered system is described with respect to a local verti-
cal–local horizontal (LV–LH) orbiting reference frame ðx; y; zÞ ¼ FORF of
origin OORF which rotates with mean motion Ω and orbital radius R0. A
general type of orbit can be accommodated in the model, as the orbital
geometry at the initial time is defined in terms of its six orbital elements,
and the orbital dynamics equation for point OORF is propagated forward
in time under the influence of the gravitational field of the primary (Earth
for LEO, Sun for Deep Space applications) and of the Earth as third body
perturbation effect. The origin of this frame coincides with the initial
position of the center of mass of the system, and the coordinate axes are z
along the local vertical, x toward the flight direction, and y in the orbit
normal direction. The inertial reference frame ðX;Y ;ZÞ ¼ FI is geocentric
inertial for LEO (X points toward the vernal equinox, Z toward the North
Pole, and Y completes the right handed reference frame), and heliocen-
tric inertial for other applications. The orbit of the origin of FORF is
defined by the six orbital elements a (semimajor axis), e (eccentricity), i
(inclination), Ωl (longitude of ascending node), ϖ (argument of perigee),
ν (true anomaly), and time of passage through perigee. The trans-
formation between FORF and FI is given by FORF ¼ RFI with R ¼
R3ðϖ þ νÞR2ðiÞR3ðΩlÞwhere Rið⋅Þ denotes a rotation matrix of ð⋅Þ around
the direction specified by the subscript. It is useful to refer the trans-
lational dynamics of body i to the origin of FORF. From Fig. 6, the position
vector of a generic structural point with respect to OORF is denoted by ρi,
and we have ri ¼ R0 þ ρi. We define the state vector as X ¼
ðrE ; _rE ;R0; _R0; ρ1; ϵ1; _ρ1;ω1;…; ρi; ϵi; _ρi;ωi;…; ρN ; ϵN ; _ρN ;ωNÞ where rE de-
fines the position of the Earth in inertial space, and ϵi and ωi represent the
quaternion and angular velocity vector of the i-th spacecraft with respect
to FI.

The tether is modeled with N point masses connected by massless
springs and viscous dampers. Each tether-connected spacecraft is
modeled as a rigid body with internal angular momentum distribution,
sensors and actuators, and mass/momentum flow representing the effect
of the variable length tether.

There are two possibilities to treat tether deployment and retraction
with a lumped mass model: either the mass of the masspoints is kept
constant (and their number will vary, implying a mass creation and
elimination procedure), or the number of masspoints is kept constant
(and their masses will vary). The first case, in which the number of
masspoints varies, is more complex than the second case, and requires a
state vector of varying dimension which needs to be updated during the
simulation. This approach may pose significant problems when state
vector variables are received from the estimator and sent to the
controller. Therefore, our model assumes that the number of masspoints



Fig. 6. Model of active tether.
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is fixed, and the varying length kinetics is included in the equations by
the correct convective terms. A similar analysis is presented in [16], but
our derivation is more general and is described in what follows.

Our approach makes use of a material coordinate s which describes
the arc-length of the tether in the undeformed configuration. Therefore,
mi
dvi

dt
¼ � _mivi þ μ

�
dsiþ1

dt
∂ρðsiþ1; tÞ

∂t
� dsi

dt
∂ρðsi; tÞ

∂t

�
� mi

�
€R0 þ 2Ω� _ρi þΩ� ρi � ρi

�þ fgravi þ faeroi þ f solari þ τiþ1 � τi (10)
considering the tether segment Ti, connecting masses I and J, we have
that at time t, 0 � s � sIðtÞ defines the tether reeled on the I-th spacecraft,
sJðtÞ � s � ltotal defines the tether reeled on the J-th spacecraft, and
sIðtÞ � s � sJðtÞ describes the deployed part of the tether. Clearly, sIðtÞ
and sJðtÞ are prescribed functions of time representing the deployment
and retrieval profiles, and we have that the currently deployed tether
length is lðtÞ ¼ sJðtÞ � sIðtÞ. In FORF, the position vector of a generic tether
point is defined by ρðs; tÞ. Capital I and J denote the end masses, while
lowercase i denotes tether points.

Let us operate a change of variables such that sðξ; tÞ ¼ sIðtÞ þ ξ lðtÞ, so
that ρðs; tÞ ¼ ρðsðξ; tÞ; tÞ ¼ erðξ; tÞ. Introducing the tether nodes ξi ¼ i�1

N�1,
i¼1,…,N, the tether element is defined by ξi � ξ � ξiþ1. Within this

element, the average position ρiðtÞ ¼ 1
▵ξ∫

ξiþ1
ξi
erðξ; tÞdξ and the mass

miðtÞ ¼ μ▵s, where μ is the tether mass density, represent the position
vector and mass of the lumped mass model. After the material differen-
tiation operator, which introduces the convective terms depending on the
current tether length and length rate, the kinematic equations of the
interior tether points may be written as (i ¼ 2;…;N � 1 )
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dρi
dt

¼ vi þ 1
l▵ξ

�
dsI
dt
erðξ; tÞ þ dl

dt
ξerðξ; tÞ�ξiþ1

ξi

(9)

while the dynamic equations may be written as
where erðξi; tÞ ¼ 1
2 ðeri�1 þeriÞ and ∂ρðsi ;tÞ

∂t ¼ 1
2 ðvi�1 þ viÞ. This is a finite

difference approximation of the tether partial differential equation.
As such, the large angle tether dynamics is correctly captured,
and the approximation improves with the number of tether
mass points.

The end body kinematic equations for the I-th spacecraft are

dρI
dt

¼ vI (11)

dϵI
dt

¼ 1
2
〈ωI〉ϵI (12)

where ω is the augmented angular velocity vector ω ¼ ½ωT 0�T , and the
〈⋅〉 operator performs the quaternion multiplication.

The dynamic equations for the I-th spacecraft are
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mI
dvI

dt
¼ τI � μ

l

�
dsI
dt

�2

uI � mI

�
€R0 þ 2Ω� _ρI þΩ� ρI � ρI

�
þfgravI þ faeroI þ f solarI þ fcontrolI

(13)

JI
dωI

dt
þ ωI � ðJIωI þ hIÞ ¼ gext

I þ dtetherI �
"
τI � μ

l

�
dsI
dt

�2

uI

#

þrcp2cm � fS
rI
jrI j3

(14)

_hI ¼ �grw
I (15)

where JI is the moment of inertia matrix of the I-th spacecraft, hI repre-
sents the total internal angular momentum distribution present in the I-th
body (from reaction wheels), and rcp2cm represents the vector from center
of mass to center of pressure. Notice the presence of convective terms also
in the end mass linear and angular momentum balance equations. They
represent the contribution of the momentum flux at the tether feed-
out point.

Finally, the tether thermal equilibrium is described by the first order
differential equation

_ϑ ¼ Qsolar þ Qalbedo þ Qinfrared � 2πrσϵϑ4

ρcm
(16)

where ϑ is the tether temperature, Q½⋅� represents an input heat flux, r is
the tether radius, σ is Boltzmann’s constant, ϵ is the tether emissivity, ρ is
the tether volume density, c is the tether heat capacity, and m is the
tether mass.

Following [26], since the spring mass frequency is too low for the
natural material damping to be effective, a longitudinal damper is added
in series to the tether itself at one of the tether attachment points. This is a
passive damper, tuned to the frequency of the tether bounce mode with a
damping ratio of 0.9. An additional dynamic equation is present, repre-
senting the linear momentum balance of the tuned damper as

ktlt ¼ kdld þ cd _ld (17)

The total tether strain is

εΔξ ¼
��

lþ lt þ ld þ lϑ
l

�
� 1
�

(18)

where l0 is the tether rest length, lt is the tether mechanical stretch, ld is
the damper mechanical stretch, and lϑ is the tether thermal stretch. The
strain rate for the tether segment of length lΔξ is

_εΔξ ¼
ldlΔξdt � lΔξdldt	

l

2 (19)

so that the tether tension in the tether segment of length lΔξ, stiffness
coefficient k and damping coefficient c, is

τΔξ ¼ kεΔξ þ c_εΔξ (20)

The control laws applied to the spacecraft are of the feedback (pro-
portional-derivative) plus feedforward type. The translation control
actually implemented on the spacecraft is of the form

f ¼ KpðsCmd � sEstÞ þ Kvð_sCmd � _sEstÞ þM€sCmd (21)

where s represents the position vector of the center of mass, Kp and Kv are
translation control gain matrices,M is the spacecraft mass matrix, sEst and
sCmd represent the estimated and commanded translation state, respec-
tively. The rotational control is instead of the following form
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τ ¼ ΓpλðθerrÞ þ ΓvðωCmd � ωEstÞ þ J€αCmd (22)

where Γp and Γv are rotational control gain matrices, J is the spacecraft
moment of inertia matrix, λ is the eigen-axis of rotation, and θerr is the
magnitude of rotation corresponding to the difference between the
commanded and the estimated quaternions. A feedforward term is used
to track a command defined up to an acceleration profile.

4. Modeling of constitutive law of active tether material

The integrated model of the tethered system in which the tether
material is an active material is derived in this section. The tether is
assumed to act as a generalized spring that undergoes a phase-transition
and behaves hysteretically, and the properties of the spring are control-
lable in a feedback loop. In the model, we also assume that we can
measure the position and attitude of the spacecraft, and that we can
measure the contact force. Summarizing the above assumptions in ana-
lytic form, the physics of the system is described by a structural dynamics
equation of motion for the physical displacements q in the second order
ODE form

MðqÞ€qþ Cðq; _qÞ _qþ KðqÞq ¼ f ðq; _q; €qÞ (23)

a phase transition balance equation for the transitioning phases ϕ

_ϕ ¼ gðϕ; σ; θÞ (24)

where σ is the stress on the tether, and θ is the temperature, a thermal
balance equation

_θ ¼ hðθ;ϕ; JÞ (25)

where J is the controlling current, and the set of initial conditions
(qð0Þ ¼ q0; _qð0Þ ¼ _q0; θð0Þ ¼ θ0;ϕð0Þ ¼ ϕ0). The actuation inputs are the
contact force f, the temperature θ, and the current J. In conclusion, for a
given applied stress and Joule heat, we can evaluate the phase fractions
and the temperature by integrating the system of equations simulta-
neously, and then calculate the resulting strain. Alternatively, by pre-
scribing strain and Joule heat, we can compute the phase fractions,
temperature, and stress. While the model in this section has been derived
with a shape-memory material in mind for simplicity, other active ma-
terials would follow the same model electro-strictive, magneto-strictive,
photo-strictive, electro-rheological, magneto-rheological, and others,
such as electro-active polymers [5].

Fig. 7 shows a block diagram of the adaptive behavior of an active
tether. The central block describes the dynamic constitutive laws of the
material, as described above. The block at the bottom describes a tether
element between two structural nodes. The top block indicates an
adaptation mechanism, implemented through feedback of the tether
state, in order to apply the adaptive control action.

Past studies [26] with shape-memory materials (SMM) on metallic
booms have shown that tip contact force modulation through distributed
control of the boom elasticity is possible, provided that thermal equilib-
rium can be maintained, which in turn dictates the type of smart material
to be used. Also, contact force modulation through distributed control of
the metallic boom elasticity was shown not only to be possible, but also to
cause weak dynamic coupling with the spacecraft, hence modulation of
the sample collection dynamics by means of phase-transition control is
feasible. Distributed sensing along the boom length, which is needed for
buckling control during contact, is feasible by sensing the curvature along
the length and feeding back an electric signal at the various stations as the
contact forces are monitored, using well-established distributed sensing
and control approaches for continuum robots [12,29]. As an example,
consider a 500 kg space-craft hovering at 250 m from the surface. To be
able to collect 0.5 kg of unconsolidated regolith from the surface of an
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asteroid with a 30 kg end effector, 20 N of force at the sampler are needed
for a 2 s dwell-time to penetrate the soil. Assuming the tethered system
modeled as a 250 m long spring contacting the surface, the spring axial
tension needs to increase from 5 mN to 20 N and held at that level for the
duration of the sampling event. This implies a material stress increase of
0.25 MPa, which can easily be accomplished by switching the boom ma-
terial phase at designated locations along the boom, for example, via Joule
heating of a shape memory material, or better with electrical activation of
electro-active polymers (EAP). EAPs have been proposed as artificial
muscles in the space environment because they can induce strains that are
as high as two orders of magnitude greater than fragile electroactive ce-
ramics, are superior to shape memory alloys in higher response speed,
lower density, and greater resilience, and they can switch phases with mW
of power to a maximum stress level of 40 MPa in milliseconds [5]. When
the tethered system grasps the surface via a harpoon, drill, some other
end-effector, there will be a variable reaction traveling along the tether
back at the spacecraft. However, the duration of the contact event can be
timed and the tether can be made to change phases before the back-
reaction affects the spacecraft adversely. During deployment, at rates of
the order of 10 cm/s, the angular momentum of the extended tether might
be considerable, and the rotation rate of the parent spacecraft could
change substantially during the tether extension and retraction. However,
this effect will be predictable and can be controlled with the attitude
control system, which will need to be designed for a maximum tether
length. The contact loads and spacecraft angular rates for terrain with
slope have been shown [26] to be higher than those with flat terrain, and
that lateral forces and lateral angular rates are larger for flat terrain but
smaller bending stiffness (more compliant member). Also, a comparison of
the spacecraft body rates during contact for various lengths under
distributed control indicated that there is little effect on the spacecraft
attitude rates due to the boom stiffening when control is applied to
implement the boom stiffening, since the rates remain well within the
maximum acceptable 0.1�/s bound.

5. Modeling of end-effector interactions with a planetary body
surface

Modeling and simulation of the harpooning process of asteroidal
bodies has been discussed in [4]. In general, slow harpooning methods
such as those based on drilling or melters would require the spacecraft
Attitude Control System (ACS) to be involved for vehicle stabilization.
Conversely, fast harpooning method such as those based on tethered
spikes, telescoping spikes, and multi-legged with tethered or telescoping
spikes would likely require less ACS involvement. Early studies on har-
pooning for the ST4/Champollion mission selected a 1 kg 1.9 cm diam-
eter truncated cone penetrator for harpooning onto the surface on
materials of strength up to 10 MPa with a 45� impact angle within a
Fig. 7. Adaptive control of active tether.
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reasonable velocity range (100–200 m/s) with a minimum pullout
resistance of 450 N in any direction. Several harpooning deployment/
retrieval issues must be carefully considered that could impact the
mission design. A harpoon may ricochet adversely on surface instead of
solidly emplacing on ground. Also, drilling a helical harpoon requires a
torque transfer to another object. PHILAEs landing gear uses ice screws
and three landing legs with two pods in each, for example. Harpoons
could be easily launched before landing. More than one harpoon would
need to be deployed from the spacecraft to ensure static stability.
Spacecraft ACS (reaction wheels, not RCS) would probably be needed to
be on during the harpooning Phase to avoid slack cables and vehicle
stability problems. Some harpoon designs would allow them to be pulled
out, others would not. Behavior of the regolith is likely governed by
cohesion and surface adhesion effects that dominate particle interactions
at small scales through van der Waals forces. Electrostatic forces are
generally negligible except near terminator crossings where it can lead to
significant dust transport. The micro-gravity and solar radiation domi-
nate system behavior prior to soil engagement or penetration. Soil me-
chanics experiments have known issues when it comes to testing samples
of regolith in one-g. First, a reproducible preparation of a homogeneous
soil sample is difficult to achieve. Second, a characterization of the soil
properties in depth is difficult, since static parameters are typically
measured at the surface. Third, under 1-g load, according to soil theory,
the compressive strength in depth is significantly influenced by over-
burden terms, i.e. the effective strength/resistance increase with depth.
The soil shear stress can be modeled as σc ¼ cþ ptanðϕf Þ, i.e., the
Mohr–Coulomb limit soil bearing capacity theory, where ϕf is known as
the friction angle (or internal-angle-of-friction), p is the normal pressure,
and the zero normal-stress intercept, c, is known as the cohesion (or
cohesive strength, i.e. shear stress at p¼0) of the soil. For typical regolith
simulant, the cohesion is 40 Pa at loosely packed conditions and in-
creases to 10 kPa at 100 relative density. The friction angle also increases
monotonically from 25� to 60�. The Rosetta Lander design takes advan-
tage of this effect of greatly increased cohesion by local compression of
the cometary regolith under the landing pods during landing. Previous
relevant regolith modeling work [6], and [14] covers both low-velocity
(approx. 1 m/s) impact of blunt bodies into dust-rich, fluffy cometary
materials [6], as well as high-velocity (approx. 10 m/s) impact of sharp
projectiles on various types of soil [1,2]. The lower limit of the tensile
strength is of the order of 1 kPa whereas the probable upper limit can be
taken as 100 kPa. The lower limit of tensile strength corresponds to a
compressive strength of c � 7 kPa. This wide range of soil properties
must be captured in simulation, which poses a significant challenge. At
very low gravity and vacuum conditions the biggest unknown is the
material strength of the surface material. Neither the Deep Impact
mission nor other comet observations have provided firm data on the
strength of cometary material. Theoretical considerations and laboratory
measurements for weakly bound aggregates and the few observational
constraints available for comets and cometary meteoroids lead to esti-
mates of the quasi-static tensile (or shear) strength of cometary material
in the dm to m range as of the order of 1 kPa, while the compressive
strength is estimated to be of the order of 10 kPa.

Now that the foundations of the regolith behavior have been laid out,
in the next section we delve into the analysis of the soil interaction
process during penetration. A complete and general solution describing
the penetration of a projectile into a solid body is not known, though
there are several published models available which may be applicable to
the harpoon (see, e.g., those listed by Wang [32]). For current modeling
efforts we consider the harpoon to be a rigid, conically tipped cylindrical
projectile, where θ is the half opening angle of the cone [2]. Several
possible forces may contribute to the overall deceleration experienced by
the projectile during penetration [1]. These may depend on penetrated
depth and velocity as well as target material parameters. Most of the
forces can be expressed as the integral of decelerating stresses over the
wetted surface Sw of the penetrator in contact with the target material.
The main force terms of clear (or plausible) physical origin found in the



Fig. 8. Soil bearing stress vs. depth as a function of (a) penetrator mass and (b)
cone angle.
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published literature are several. First, a constant term associated with
compressive strength, possibly including a contribution from the targets’
self-weight. The latter should be negligible on the comet, where the
surface gravity g is expected to be no more than about 1/2000 of that on
Earth. It may be more significant for ground-based experiments where
the projectile is fired downwards into a cohesion-less target, though the
fact that it is also proportional to the diameter of the projectile means
that the term is still quite small for laboratory-scale experiments. Second,
a term which increases linearly with depth due to the weight per unit
volume ρg of the overlying material (overburden pressure). As with the
self-weight, this should be negligible on the small body but needs to be
considered for ground-based experiments, especially those with
cohesion-less targets. This term is also proportional to a factor NqðϕÞ. For
the limit ϕ ¼ 0, Nq¼1 and the term becomes analogous to buoyancy in a
fluid. Third, a dynamic drag term proportional to the target density ρ and
the square of velocity V, resulting from the transfer of momentum from
the projectile to the target material. In many cases the importance of drag
is incorporated by adopting a drag coefficient CD (whichmay itself have a
velocity dependence), analogous to the parameter used in fluid dy-
namics. Fourth, a sliding friction term indicating the friction between the
projectile surface and the target material, governed by the coefficient of
sliding friction μf and the total normal stress from the three terms above.
Fifth, a viscosity or damping term, proportional to the component of
velocity parallel to the projectiles surface. As with friction, this force acts
parallel to the harpoons surface rather than normal to it. The physical
validity of this term seems to be amatter for debate. Finally, the weight of
the projectile. This is only important when significantly compared to the
other (decelerating forces). Collecting these terms together with the
appropriate geometric factors, one obtains the following equation for the
overall deceleration:

�dV
dt

¼ 1
m
∬ Sw

��
1
2
CDρV2sin2θ0 þ σ þ ρgNqz

�
� ðsinθ0 þ μf cosθ0Þ

þ kvVcos2θ0
�
dA� g

(26)

In this equation, θ0 ¼ θ along the conical tip, but θ0 ¼ 0 along the
cylindrical shaft of the penetrating object. Also, from Komle [14],
NqðϕÞ ¼ expðπtanϕÞtan2ðπ4 þ ϕ

2Þ, and kv is a constant with units of
½N s m�3�, i.e., those of viscosity divided by the thickness of a represen-
tative boundary layer around the projectile where viscous flow occurs.
From [14], a parameter analogous to a drag coefficient can be defined in
terms of the material parameters as

CD ¼ 2
ð1� ηÞcos2θ �

�ð1� ηÞ þ 1=αþ η=ð2� αÞ
ηα=2

� 1
α
� 1
2� α

�
(27)

where α ¼ 3λ=ð3þ 2λÞ, λ ¼ tanðϕÞ, ϕ is the angle of internal friction, η ¼
1� ρ0

ρ is the volumetric strain, ρ0 is the bulk density of the target material

before penetration. The case η ¼ 0 implies zero compression.
To get insight into the sensitivity of the system to the various pa-

rameters involved, we derived a simple one-dimensional model of the
system behavior during penetration in [28]. Fig. 8, taken from [28],
depicts the soil bearing stress vs. depth as a function of (a) penetrator
mass and (b) cone angle, confirming the fact that a larger diameter
harpoon would penetrate less, and that a heavier harpoon would pene-
trate deeper. All these results assume an initial approach velocity of
1 m/s.

Now that we have insight into the system behavior, we apply these
models to various scenarios.

6. Example: small body sampling with phase-transition tether

The objective of the phase-transition tether (PTT) [26] is to
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investigate the potential that intelligent material actuation has to pro-
vide mechanically simple and affordable solutions for delivering assets
to a surface and for sample capture and possible return. In the PTT
example, we have focused on several intelligent materials, but mostly on
a shape memory material. Shape memory materials (SMA) possess an
interesting property by which the material remembers its original size
or shape and reverts to it at a characteristic phase transformation
temperature [7]. By training an SMA wire to remember a given straight
or curved shape when heated or cooled down to a given temperature, a
long wire with low inherent bending stiffness may be ejected or
unreeled from a spacecraft and then transformed into a long thin beam
via a controlled material phase transition. Once the phase transition has
been induced, the wire exhibits a bending stiffness that did not exist
before, and the deployed appendage operates now as a stiff robotic arm.
Fig. 2 shows a conceptual view of how artificial manipulator tensioning
would occur via an embedded SM wire, and a proposed sequence for
sample capture phase. Conversely, when the phase transition reverses,
the original state of string behavior dominated by axial tension is
recovered and the appendage can be reeled back inside the spacecraft.
The transition is almost perfectly reversible and, in principle, many
cycles can be performed reliably, which would enable either



Fig. 9. Properties of phase-transition simulation.

Fig. 10. Stress vs. strain hysteresis curve during contact sampling.

Fig. 11. Comparison of global shape of 100 m boom length witho
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deployment of an asset or retrieval of a collected sample. Shape memory
phase transition behavior is tailorable, and compositions exist that have
been tested at 99 �C and below. After plastic deformation at low tem-
perature, the SMA returns to its original configuration upon the supply
of heat. The material seems to remember its former shape, which gives
the name to the effect. At a higher temperature, another important
phenomenon can be observed. Here, the material can be reversibly
deformed up to 10% of its original length under a nearly constant load
this behavior is termed superelasticity. Both effects are a consequence of
the load–deformation behavior, which is called quasiplastic at low
temperature and pseudoelastic at higher temperature. The underlying
mechanism of the observed phenomena is a phase transformation be-
tween different crystallographic structures, i.e., different variants of the
martensite and the austenite phases. A variety of asset deployment of
sample capture scenarios would be possible that could potentially
minimize the dynamic interactions with the spacecraft during the ma-
neuver. For example, a minimum load of 20 N was shown to be required
to be maintained on the end-effector for approximately 2 s so that
enough soil sample could be collected from an asteroid, which trans-
lated in an adverse reaction on the spacecraft and necessitated addi-
tional use of the thrusters to correct the attitude at the end of the
maneuver. With the new concept, the stiffness of the end-effector arm
can be actively modulated so that the back-reaction on the spacecraft
can be greatly reduced. Since the rigidity of the link can now be tailored
ut (left) and with (right) distributed phase-transition control.
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electrically to specific values, innovative scenarios involving different
end-effectors can be envisioned that are highly repeatable, simpler in
design, with lower mass, power, and cost. Consequently, we have syn-
thesized the following problem statement: given the spacecraft,
manipulator, and terrain models, develop an adaptive control logic and
actuator location distribution for the manipulator stiffness that, in
conjunction with the attitude and altitude control of the vehicle, de-
couples the dynamics of the spacecraft from the dynamics of the end-
effector while collecting a sample, in a stable manner over a specified
amount of time. The adaptive control law is such that the curvature of
the manipulator can be modulated over the time the sample has to be
collected. To achieve the full potential of shape memory actuation, it is
necessary to develop models that characterize the hysteretic non-
linearities inherent in the constituent materials. Additionally, the design
of SMA actuators necessitates the development of control algorithms
based on those models. We have investigated models that quantify the
nonlinearities and hysteresis inherent to phase transition, each in for-
mulations suitable for subsequent control design. Candidate models that
have been proposed in the past employ either domain theory to quantify
phase transition behavior under isothermal conditions [8,9] or a Mul-
ler–Achenbach–Seelecke [23,30] framework, where a transition state
theory of non-equilibrium processes is used to derive rate laws for the
evolution of material phase fractions. These models involve first-order,
nonlinear ordinary differential equations and require few parameters
that are readily identifiable from measurements, hence we have selected
to use these differential models in our analysis. Shape memory actuators
are typically driven by electric current heating. Using the Mul-
ler–Achenbach–Seelecke model, for example, the stress–strain consti-
tutive relationship (A¼austenite, M¼martensite) is given by:

σðϵÞ ¼ EM ½ϵ� ðxþ � x�Þϵ0�
xþ þ x� þ EM

EA
xA

(28)

The maximum recoverable quasiplastic residual strain ϵ0 can be
identified from experiment. The evolution of the phase fractions xA, xþ,
x� is governed by the rate laws:
Fig. 12. Parameters used in simulation
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_xþ ¼ �xþpþA þ xApAþ _x� ¼ �x�p�A þ xApA� (29)

where the homogeneity law XA þ xþ þ x� ¼ 1 holds. The quantities in
the rates of the phase fractions are transition probabilities, for example,
p�A is the transition probability from Mþ phase to A phase. The transi-
tion probabilities are computed as the product of the probability of
achieving the energy required to overcome the energy barrier and the
frequency at which jumps are tempted. SMA actuators are typically
driven by electric current heating. The temperature change coupled with
the mechanical loading triggers the phase transformation between
martensite and austenite, and generates the material deformation.
Assuming that uniform temperature changes through the material, the
heat transfer equation becomes:

ρc _θðtÞ ¼ �αCvðθ � θ0Þ � σRϵRðθ4 � θ40Þ þ jðtÞ � ðhMþ � hAÞ _xþ
�ðhM� � hAÞ _x� (30)

where the specific heat c is assumed to be the same for the austenite and
martensite phases. The first term is the heat convection to the environ-
ment with temperature θ0. The second term is the heat exchanged with
the environment by radiation. The third term is the Joule heating. The
last two terms represent the rate dependent heat generation and loss due
to the phase transformation, where the h-terms represent the latent heats
of transformation of each phase.

Fig. 9, taken from [26], shows the properties used in the simulation of
the phase-transition tether. Fig. 10 shows the comparison of the material
stress–strain curve during contact for various lengths. Fig. 11 shows a
comparison of the global shape of the 100 m boom configuration without
(left) and with (right) distributed phase-transition control. The results of
these analyses demonstrate that contact force modulation through
distributed control of the boom elasticity is not only possible, but also
causes weak dynamic coupling with the spacecraft, hence modulation of
the sample collection dynamics by means of phase-transition control is
feasible. The implementation issues of effective insulation and thermal
control during the material phase transition remain to be investigated,
of retrieval of tethered harpoon.



Fig. 13. (a) Simulation snapshot: with tether and (b) trajectory during tether retrieval.
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Fig. 14. (a) Tether tension and (b) tether angle varying thrust from 10 to 20 N. (c) Tether tension and (d) tether angle varying the horizontal velocity dispersion from 0.01 to 0.1 m/s.
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and will be the subject of future work.

7. Example: tether-assisted retrieval of harpoon during fly-by

In this section, we discuss the effect of adding a tether to retrieve the
canister. Fig. 12 summarizes the various system parameters considered in
this study. The pictorial depiction of the model and the parameters used
in the simulation are shown in Fig. 17(a). A viscoelastic spring–dashpot is
used to model the tether, connecting the harpoon to the spacecraft. For
simplicity, the problem is two-dimensional. At the initial conditions, the
system is hovering along the radial direction, with the canister on the
ground at zero velocity (just released from the harpoon casing), while the
spacecraft is at 100 m altitude and has velocity initial conditions both in
the vertical and in the horizontal directions. These velocity initial con-
ditions represent initial dispersions in velocity accounting for control
imperfections. Fig. 17(b) shows the timeline and a snapshot of the teth-
ered harpoon leaving the surface as the spacecraft pulls it. A 0.1 N s
ejection impulse from the surface is applied to the canister at 0 s.
Spacecraft fly-away acceleration (thrusting) is initiated at 0.2 s, and
tether retrieval is initiated after 5 s. The assumed Isp for the spacecraft
fly-away thrusters is 220 s.
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Fig. 13(b) shows the trajectory of system from initial condition,
bringing into evidence the system transfer of angular momentum which
takes place the moment the canister is released from the harpoon. The
results of the sensitivity study as the fly-away thrust varies from 10 to
30 N and the horizontal velocity dispersion varies from 1 to 10 cm/s are
summarized in Fig. 14. These results indicate that the tether retrieval is
achievable with reasonable dV fuel budget, and that the tether pendulum
model amplitude angle is smaller with larger thrust.

Fig. 14 also shows the sensitivity as a function of increasing the
horizontal velocity dispersion from 1 to 10 cm/s, which increases
both canister swing angle and tether tension. This case was important
to analyze because the canister swing angle was bounded to
stay within the camera FOV for visual tracking, especially at
close distances.

Fig. 15 shows the sensitivity as the initial vertical dispersion velocity
is varied from 1 to 3 m/s and shows that, except for the initial transient,
the tether pendulum model amplitude angle is insensitive to vertical
velocity dispersion. Fig. 15 also shows the sensitivity as the tether
retrieval rate is varied from 10 to 30 cm/s, and shows that the canister
angle is sensitive to the tether retrieval rate since, for higher retrieval
speeds, a larger tether angle develops sooner, and lead to earlier



Fig. 15. (a) Tether tension and (b) tether angle varying vertical velocity dispersion from 1 to 3 m/s. (c) Tether tension and (d) tether angle varying tether retrieval speed from 10 to
30 cm/s.
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canister capture.
The tether pendulum motion could potentially be reduced with a S/C

pendulum cancelation maneuver using well-established techniques of
vibration reduction using input shaping. This maneuver would track the
canister motion, e.g. visually, and the spacecraft would execute lateral
motion to reduce overall tether pendulum angle, repeating the cancel-
ation motion to further reduce pendulum angle.

8. Example: simulation of sling-shot fly-by maneuver

The tether sling-shot gravity assist has already been covered in the
literature by various authors [15,22,24]. The analysis of tethered sys-
tems with harpoons has also been considered [28]). Consider that the
spacecraft has already harpooned to the asteroid. The asteroid gravi-
tational parameter is μa and is of radius r0. The tether connecting the
spacecraft to the asteroid is of length L, density ρ and area A(r), to allow
for possible tapering. The tether material has Young’s modulus E, and
tether working strain δ. The spacecraft is rotating about the asteroid at
angular rate ω ¼ Vrel

r0þL. The tether tension is T ¼ σbA where σb is the
tensile strength of the tether material. The tether longitudinal sound
velocity is CL ¼

ffiffiffiffiffiffiffiffi
E=ρ

p
, the characteristic velocity is Vc ¼

ffiffiffiffiffiffiffiffi
σ=ρ

p
, the
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tether tension along the tether length at station r is

T ¼ σA ¼ mω2Lþ ρAω2

2 ðL2 � r2Þ, and the spacecraft-to-tether mass ratio

is m=mtether ¼ ðVc=VrelÞ2 � 1=2 ¼ δðCL=VrelÞ2 � 1=2. This last equation
shows that as the spacecraft mass approaches zero, there is an upper
limit to the velocity that can be constrained by the tether, namely,
Vrelmax ¼ ffiffiffiffiffi

2δ
p

CL. This limit does not depend upon the spacecraft mass or
tether length. It is an intrinsic property of the tether material. For
Kevlar 49, CL ¼ 10 km=s, and a representative value for the working
tether strain is δ ¼ 0:01. (Actually, the breaking strain is δmax ¼ 0:02,
therefore, we have an adequate, but not generous, safety factor of 2 in
the working strain.) Then, the characteristic velocity is
Vc ¼

ffiffiffi
δ

p
CL ¼ 1 km=s, and the maximum spacecraft velocity is

Vrelmax ¼ 1:4 km=s. The equation above also places limitations on the
achievable relative velocities for a given material and a given
spacecraft-to-tether mass ratio M/m. This is shown in Fig. 17(a) for
three different materials: Zylon (E ¼ 5:8 GPa), Kevlar (E ¼ 100 GPa),
Carbon Nanotube fiber CNT (E ¼ 500 GPa).

The balance of forces of a tether element leads to:

dT
dr

¼ ρAðrÞ
�μa
r2

� ω2r
�

(31)



Fig. 16. Parameters of hitchhiker simulation (from [21]).

Fig. 17. (a) Velocity limitations for various payload-tether mass ratios and tether strength
and (b) maximum ejection velocity as a function of material Young modulus.
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In general we should be including asteroid gravity because a massive
asteroid may be used for the fly-by, and for a massive asteroid and short
tethers it would be comparable to the centrifugal force on the tip mass
being ejected. For example, for the proposed Asteroid Redirect Mission, a
1,000,000 kg asteroid of 6 m length, with a spin rate of 2 rpm was
considered. Also, tether lengths of 10’s of thousandths of kilometers have
been considered for this application. However, for now let us neglect
asteroid gravity, and include the asteroid spin rate Ω and the angle ϕ
between the deployed tether and the normal to the asteroid surface,
Ref. [15] arrives at:

dT
dr

¼ �ρAðrÞ½rð _ϕþΩÞ2 þΩ2r0cosϕ� (32)

Integrating this equation with Ω ¼ 0, in the constant area case,
leads to:

Tðr; tÞ ¼ σðr; tÞA ¼ LωðtÞ2
�
mþ ρAL

2

�
1� r2

L2

��
(33)

and to

Tðr; tÞ ¼ σðrÞAðrÞ ¼ mLωðtÞ2exp
"
ρ _ϕ

2
0ðL2 � r2Þ
2σ0

#
(34)

in the constant stress case. At r¼L, Eq. (34) leads to v ¼
ffiffiffiffiffiffiffiffi
2σ

ρþ2m
AL

q
. Assuming

m¼0, or a very long tether, it becomes v ¼
ffiffiffiffi
2σ
ρ

q
Fig. 17(b) shows the

ejection velocity as a function of material Young modulus, from the
above equation.

In this case of constant area tether, we can write dT ¼ dσA, and
integrating the balance of forces between the asteroid surface at r0 and
the spacecraft at r ¼ r0 þ L, with L being the tether length, we obtain:

σðrÞ ¼ σ0 þ ρμa

�
1
r0
� 1

r

�
þ ρ

ω2

2
ðr20 � r2Þ (35)



Fig. 18. (a) A sample sequence of a space hitchhike maneuver (image taken from [21]), and (b) sample sequence of slingshot maneuver with inertial change of direction.
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where σ0 is the stress level at the anchor, equal to the anchoring force,
divided by the tether area. This equation shows that there is a maximum

distance of rmax ¼
�
μa
ω2

�1
3
at which the tether stress reaches the maximum

tensile strength. Therefore, a constant area tether will be limited in length.
For a given tether length L, we can rewrite (36) as:

σbreak ¼ σ0 þ ρμa

�
1
r0
� 1
r0 þ L

�
þ ρ

V2
rel

2ðr0 þ LÞ2ðr
2
0 � ðr0 þ LÞ2Þ (36)

which gives the attainable Vrel for a fixed breaking strength σbreak and a
527
fixed tether length L. The total attainable velocity at the end of the fly-by
will be Vtotal ¼ Vinf þ Vrel. In case of constant stress tether, we can write
dT ¼ σdA, and integrating the balance of forces between the asteroid
surface at r0 and the spacecraft at r ¼ r0 þ L, with L being the tether
length, we obtain:

AðrÞ
A0

¼ exp


ρ

σ

�
μa

�
1
r0
� 1

r

�
þ ω2

2
ðr20 � r2Þ

��
(37)

where A0 is the area at the anchor. This equation shows that, at constant
stress, the tether will be tapered. A tapered tether will not break for any
tether length, provided the stress is kept less than the breaking strength.



Fig. 19. A sample sequence of the tethered grappling maneuver.
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However, it may be very difficult if not impossible to manufacture. For a
given tether length L, we can rewrite (37) as:

Aðr0 þ LÞ ¼ A0exp

(
ρ

σbreak

 
μa

�
1
r0
� 1
r0 þ L

�
þ V2

rel

2ðr0 þ LÞ2

ðr20 � ðr0 þ LÞ2
!) (38)

which also gives the attainable Vrel for a fixed breaking strength σbreak, a

fixed tether length L, and a fixed ratio of tether areas Aðr0þLÞ
A0

.
As an example of the tether sling-shot maneuver, the Comet Hitch-

hiker [21] concept would essentially perform momentum exchange with
a target body using an extendable/retrievable tether. Details of the tether
finite element simulation are discussed in [21]. In the simulation, we
assume that the tension during the sling-shot is controlled in a manner
analogous to a fishing reel, which saturates at a certain level of tension. In
particular, the amount of deployed tether is held constant as long as the
tension felt by the spacecraft is below a certain target tension; above this
level, tether is deployed in order to maintain the target level of tension.
Fig. 16 shows the parameters used in the simulation. Fig. 18(a) shows a
sample sequence of a space hitchhike maneuver simulated by the tether
finite element simulator (the size of spacecraft is exaggerated for
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visualization purposes). Fig. 18(b) shows a sample sequence of a sling-
shot maneuver with inertial change of direction.

9. Example: simulation of tether grappling a moving polyhedral
object

In this last section, we deal with the simulation of a scenario in which
the tether is grappling a moving solid object. This simulation involves the
use of a modeling, simulation, and visualization engine for dynamics,
such as the one based on the Spatial Operator Algebra [13] used at JPL in
the DARTSLab [10]. It also involves non-smooth contact and collision
between bodies in motion, which was modeled as a complementarity
problem with friction. Fig. 19 shows a sample sequence of the tethered
grappling maneuver, in which the tether wraps around the cylindrical
spacecraft. This problem was modeled with the complementarity tech-
niques described in [19]. A minimal coordinate operational space
formulation is used to model the dynamics of this system. Since minimal
coordinates are used, the inter-link constraints are automatically elimi-
nated. No loop-closure bilateral constraints exist for the multi-link tether.
Hence, the only constraints acting on the tether system are unilateral
contact constraints. The size of the complementarity problem is defined
by the number of contacts, which varies as the tether wraps around the
target object.
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10. Conclusions

This paper has described an approach for modeling, simulation, and
control of tethered systems in which the tether is actively controlled.
Various aspects of the system model have been described, including
tether dynamics, end-effector dynamics, contact interaction and the
model of the active tether material. Three scenarios were considered: a
tether made of an electrically switchable material for small body sam-
pling, a tether for close-proximity operations such as capture and grap-
pling, and a tether harpooning to a small body for sample capture, fly-by,
rendezvous, and/or landing.

The key points that should be taken from this paper are that: (a)
Active Tether Systems are a yet undeveloped, but potentially fertile, area
of research since they have the potential of exploiting the multi-physics
capabilities of intelligent materials with challenging applications
requiring tether technology; (b) both quasi-static and highly dynamic
space tether mission scenarios offer opportunities for the application of
active tethers; and (c) there is synergy and cross-fertilization between
recent developments in material science (smart materials) and tether
system technology, with great potential for applications in future
space missions.

Future work may include higher fidelity modeling and simulations of
the Active Tether Systems in the scenarios of operation described in the
paper using advanced modeling techniques such as finite elements, or
finite differences propagation schemes, as well as experimental tests on
prototypes of scaled-down versions of the active tether that would be
appropriate for air table testing in a ground laboratory, before con-
ducting further tests in orbit.
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