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Abstract—This paper reports on a study of the application of
a ram-air parafoil to Entry, Descent, and Landing (EDL) on
Titan. A comprehensive simulation was constructed to enable
simulation of EDL state estimation performance from 10 min-
utes before entry (E-10 min) to touchdown on the surface of Ti-
tan. EDL performance is characterized assuming an entry phase
starting at E-10 min followed by a parafoil guided phase for de-
scent and landing to enable precise landing on a predetermined
target. Guided descent during the parafoil phase is achieved
using the parafoil steering capability while state estimation is
accomplished using vision-based Terrain Relative Navigation
(TRN). The simulation is used in this study to conduct Monte
Carlo analysis of TRN state estimation for a full entry phase
sequence followed by a straight line flight path descent and
landing.
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1. INTRODUCTION
Titan is a complex, diverse Ocean World that will require
multiple missions to understand it’s organic chemistry and
potential habitability. Landing dispersions with existing
technology are hundreds of kilometers wide, which could
place future landers far from the most scientifically promising
terrain. The objective of this work is to address the prob-
lems of and investigate appropriate solutions to Guidance
& Control aspects of autonomous Precision Aerial Delivery
Systems for payload delivery using parafoils on Titan. As
part of this effort, and leveraging past work [1–4], we have
been developing a simulation of end-to-end EDL (Entry,
Descent, and Landing) performance and using the simulation
to estimate and optimize expected landing dispersion, with
the goal of showing feasibility of reducing delivery error by
at least 100 km compared to Huygens-like descent.

We have extended our in-house Dynamics Simulator for
Entry, Descent and Landing (DSENDS) [5] with libraries
of vehicle dynamics models to handle the parafoil concept
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proposed here and the specific state estimation, tracking,
and control capability in conditions relevant to Titan’s en-
vironment. Terrain Relative Navigation (TRN) estimation
is based on an Extended Kalman Filter - Simultaneous Lo-
calization and Mapping (EKF-SLAM) algorithm and is a
key component in this study for determining lander delivery
error [6]. For simulation purposes, the TRN estimation [7] is
carried out independently from the DSENDS simulation over
a Robot Operating System (ROS) node. We have developed
and tested several dynamic models of the parafoil system
descending in Titan’s atmosphere based on models previously
used for simulation in the Martian environment [2], and we
have expanded these dynamic models to enable higher fi-
delity descent simulations to assess the impact on the landing
precision. A six degrees of freedom capsule and parafoil
system model has been implemented to efficiently simulate
the desired conditions for the entry, descent, and landing
phases.

In the following, we describe (1) a Titan relevant mission
design and EDL architecture, (2) the integrated end-to-end
simulation used to evaluate TRN state estimation perfor-
mance, (3) the proposed TRN state estimation framework,
and (4) the results of a TRN state estimation Monte Carlo
analysis of an E-10 min to ground EDL sequence using a
Maracaibo Lacus scenario.

2. MISSION DESIGN AND EDL
ARCHITECTURE

Mission Design and Navigation (MDNAV)

An overall architecture for Titan EDL is highly coupled to
a mission design scenario and a corresponding approach
navigation for a particular interplanetary trajectory. The Earth
launch opportunity was chosen based on the approximate
time frame of New Frontiers 5. The Earth-Earth Jupiter
Saturn (EEJS) interplanetary trajectory was designed with
a launch date on 1 Nov 2035 and a Saturn system arrival
in May-Dec of 2046. A 10.6 year transfer assumes Earth
and Jupiter gravity assisted flybys as well as a deep space
maneuver of 860 m/s. The interplanetary trajectory had
to be linked with each EDL scenario for a chosen landing
site analyzed in this study. A Titan direct entry and an
atmospheric entry from Saturn’s elliptical orbit are the two
main approach trajectory cases analyzed for Titan landing
site analysis. The direct entry case is analogous to most
of the Mars EDL missions, where the entry probe/vehicle
is separated from the spacecraft cruise at E-10 min. This
approach allows to minimize the navigation delivery and
knowledge position/velocity errors that are critical for EDL.
The second trajectory scenario is similar to Huygens EDL,
where the probe is released (E-7 days) from the spacecraft,
which is in an elliptical orbit around Saturn. Titan is locked in
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Saturn’s orbital rotation which makes the MDNAV problem
overly constrained during the targeting process, especially for
the Titan direct interplanetary trajectories. The two reference
landing sites such as Huygens probe (10.25◦ S, 192.32◦ W)
and Maracaibo Lacus interlake region (74.95◦ N, 128.67◦ W)
have been chosen to fully investigate the MDNAV/EDL feasi-
bility. The northern Maracaibo landing site for Titan’s direct
entry requires a shallow Entry Flight Path Angle (EFPA) of
-51◦ whereas the Huygens site can be targeted with EFPA
of -65◦. A Titan entry from Saturn’s orbit can be achieved
with steeper EFPA of -71◦ at the expense of the increased
EFPA uncertainty as well as position knowledge error. Figure
1 illustrates parametric trades of the MDNAV/landing sites
which can have a direct impact on EDL performance. A
Huygens type of entry vehicle was used in EDL trajectory
analysis for the cases summarized in the figure.

EDL Architecture

The EDL architecture will primarily be driven by the lander
design and packaging constraints within the aeroshell. In this
study the entry probe mass was chosen to be 320 kg to make
a compelling comparison case with Huygens mission. For
the EDL mechanical configuration, the capsule diameter was
constrained to 2 m. The two aeroshell configurations were
analysed in this study assuming 60◦ and 45◦ heatshield ge-
ometries. The 60◦ spherecone case is based on the Huygens
style EDL Concept of Operations (ConOps) where the probe
releases a small drogue parachute at approximately Mach
1.5 in order to mitigate the capsule instabilities during the
transonic phase. For a given probe mass, this is typically
achieved at 135 km above the surface of Titan. Another
approach for a conceptual entry vehicle is to use the Pioneer
Venus Large Probe heritage for a 45◦ spherecone geometry.
Figure 2 illustrates the geometry and the mass properties
of the Pioneer Venus Large Probe mechanical design which
were used as a reference in this study for the mass/inertia
scaling laws. A 45◦ spherecone entry probe allows a more
aggressive scenario where the probe would fly through the
transonic phase without the need to deploy the stabilizing
drogue chute. This particular approach can reduce the EDL
timeline, minimize the wind drift on the parachute and reduce
the overall footprint size. The outlined concept was chosen as
a baseline for this study and the development of the EDL end-
to-end simulation. The ConOps was constructed based on
the Titan Direct hyperbolic trajectory for the Maracibo Lacus
site with EFPA of -51◦ at 1500 km entry interface altitude.
Figures 3 and 4 illustrate the key EDL events and an overall
timeline for a baseline case used in the end-to-end EDL
simulation. As can be seen from the figure, shortly after the
atmospheric entry (E+3.8 min) the probe will experience the
heat pulse and the peak deceleration at E+4 min. The capsule
then would fly through the transonic phase without losing
dynamic stability and the main chute would be deployed
at E+30 min. The main objective of the main chute is to
create a necessary ballistic coefficient ratio for a successful
heatshield release. Once the heatshield is released at 40 km
altitude Above Ground Level (AGL), the altimeter starts the
ground acquisition. After the altitude solution is acquired
the EDL sequences transitions into TRN with lander vision
map matching technique. At E+32 min after entry the main
chute is jettison followed by the parafoil deployment. The
aeromaneuvering would continue for approximately 3 hours
after deployment in preparation for the final approach and
landing phase. The technical details of the parafoil modeling
within the EDL simulation are described in the subsequent
sections.

3. END-TO-END SIMULATION
The Guidance & Control simulation architecture is based on
the DSENDS multi-mission framework [8]. The simulation
is designed to simulate EDL performance from capsule entry
conditions at E-10 min to touchdown on Titan. Figure 5
illustrates the primary components included in the simulation.

Titan Environment

The simulation uses the Global Reference Atmospheric
Model (GRAM) Titan-GRAM 2004 by default for modeling
Titan atmospheric density and winds. Compared to Earth
and Mars, Figure 6 illustrates Titan’s significantly more dense
atmosphere (4x more dense than Earth at the surface). At the
surface, the Yelle model [9]

ρ = 5.43 exp

(
−0.0512h

1000

)
(1)

and Titan-GRAM 2004 are comparable, but begin to differ
at altitudes h greater than 40 km. Titan zonal winds (East-
West) are much larger than meridional (North-South) winds
except near the poles where upper bound wind speeds reach
approximately 1 m/s over a Saturn year [10].

Although Titan is larger than the Moon, Titan’s gravity
g = 1.35 m/s2 at the surface is smaller due to its lower
density. The simulation implements a general N–body grav-
ity model that includes planetary ephemeris obtained using
the Navigation Ancillary Information Facility (NAIF) SPICE
DE430 and SAT375 libraries [11]. The default gravity model
includes point mass gravitational acceleration effects from
Saturn, Titan, Dione, Rhea, Iapetus, and the Sun.

Capsule and Parafoil Dynamics

During the entry phase the capsule dynamics are modeled
using a six degree-of-freedom (6DOF) rigid body. The
nominal capsule mass properties are listed in Table 1. The

Table 1. Capsule Mass Properties

Parameter Value
mass 320 kg

inertia

 71.9 0.45 −0.096
0.45 75.85 0.338

−0.096 0.338 127.97

 kg ·m2

center of mass
[
0 0 0

]
m

DSENDS viewport in Figure 7 depicts the capsule during
an entry phase scenario. 6DOF capsule aerodynamics and
drogue parachute drag forces are included in the capsule
dynamics model. 6DOF capsule aerodynamics are incorpo-
rated in the simulation for a 45◦ spherecone aeroshell using
a lookup table database. The drogue parachute drag force on
the capsule is modeled by applying a force in the opposite
direction of the atmosphere relative velocity vrel vector as

F p = −1

2
ρ‖vrel‖CDp

Apvrel, (2)

where CDp
is the parachute drag coefficient and Ap is the

parachute reference area.

The parafoil system is composed of (1) a rigid canopy airfoil
body and (2) a rigid payload body that is attached to the
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Figure 1. Approach navigation and landing sites.

Figure 2. Pioneer Venus heritage mass properties.
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Figure 3. Titan EDL baseline ConOps from E-10 min to E+30.2 min

Figure 4. Titan EDL baseline ConOps from E+30.2 min to touchdown
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Figure 5. DSENDS simulation and state estimation block diagram.

Figure 6. Atmospheric density comparison.

canopy using suspension lines. It is used during the descent
phase in order to realize a guided system. The parafoil is able
to actuate longitudinal and lateral dynamics by symmetrically
and asymmetrically deflecting the parafoil flap, respectively.
This enables turning, flaring, and velocity control of the
vehicle. We have developed several dynamics models of
the parafoil system that include point mass models (3 and
4 DOF) and rigid body models (6, 7, 8 and 9 DOF) that
include relative dynamics between the canopy and payload
bodies. The default simulation configuration uses the 6DOF
model, which assumes the canopy is fully inflated with no
deformation or relative motion between the canopy and the
payload. Parafoil deployment is modeled such that the
canopy is inflated instantaneously at the deployment event.
The details of the parafoil 6DOF model, the aerodynamics
coefficients used to model the aerodynamics forces acting

Figure 7. DSENDS entry phase visualization.

on the parafoil, and the apparent mass and inertia effects
are described in more detail in [2]. Figure 8 illustrates the
canopy and payload coordinate systems during descent. The
red, green, and blue axes correspond to the typical roll, pitch,
and yaw angular motions.

Sensor Modeling

State estimation performance depends critically on an inertial
measurement unit (IMU), two descent cameras [15], and an
altimeter.

IMU—The IMU measurement model includes error modeling
for individual gyroscope and accelerometer sensors; i.e., error
models are specified for each gyroscope and accelerometer
axis. This includes angle random walk (ARW), velocity
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Figure 8. DSENDS descent phase visualization.

random walk (VRW), scale factor error, constant rate bias,
constant acceleration bias, misalignment, and quantization
effects. We assume the IMU has three orthogonally mounted
gyroscope sensors and three orthgonally mounted accelerom-
eter sensors. Tables 2 and 3 list the 1-σ errors used in this

Table 2. Gyro Error Parameters

Parameter 1-σ
ARW 0.01 deg/hr0.5

scale factor 33.3 ppm

constant rate bias 0.3 deg/hr

misalignment 18 arcsec

quantization 1.8 µrad

Table 3. Accelerometer Error Parameters

Parameter 1-σ
VRW 0.033 m/s/hr0.5

scale factor 150 ppm

constant accel bias 100 µg
misalignment 18 arcsec

quantization 2.7 mm/s

study. These error parameters are consistent with a navigation
grade Miniature Inertial Measurement Unit (MIMU).

Visual processing— During the descent phase, a camera
is used to accomplish visual-inertial odometry (VIO). We
assume the camera has a 90◦ field-of-view (FOV) and is
mounted at the bottom of the payload such that dcamera =
[0, 0, 0.5] m relative to the payload frame. The camera
simulation model is idealized to generate a buffer of features
that intersect the camera focal plane and the surface of Titan.
Figure 9 illustrates a snapshot of the available features in
the FOV of the camera during descent. The five red sphere
features are used for reference. They represent the line-of-
sight (LOS) and the four corners of a 90◦ FOV camera. The
four blue sphere features are used for map matching, which
will be discussed in the following section. They are fixed
in the camera frame at 20◦ from the LOS. Finally, the green
sphere features are used for feature tracking, which will also
be discussed in more detail in the following section. They are

Figure 9. DSENDS feature map visualization.

randomly generated features in the FOV. The camera model
has a fixed-size buffer that is selected at runtime. When
a feature leaves the FOV the camera model will randomly
generate a new feature in the FOV to maintain the fixed-size
buffer.

We assume Titan is spherically shaped in order to generate a
feature on the surface. Under this assumption, the mapped
feature coordinates in the Planet-Centered Inertial {PCI}
frame are obtained analytically by solving the quadratic equa-
tion

x2− 2‖pciPCI‖(ûm · n̂T )x+ ‖pciPCI‖
2− r2TITAN = 0, (3)

where pciPCI is the position vector of the camera frame in the
{PCI} frame, ûm is the unit vector from the camera frame
to the feature, n̂T is the unit nadir vector, and rTITAN is the
mean Titan radius. The feature position in the {PCI} frame
is then

pm = pciPCI + (‖pciPCI‖ − x) ûm. (4)
Using the tracked feature position, the camera measurement
model produces normalized image space coordinates

(ũ, ṽ, 0) =
1

ûm · ûLOS
ûm − ûLOS + nc, (5)

where we assume ûLOS = [0, 0, 1] is the LOS unit vector
in the camera frame and nc is zero-mean Gaussian white
measurement noise. Camera measurement error modeling is
split into map matching and feature tracking specific noise
models in normalized image space coordinates. The noise
models depend on Titan location specific imagery and are
discussed in more detail in [15]. For the Maracaibo Lacus
region, we use the 1-σ errors shown in Figures 10 and 11.

Altimeter—We assumed availability of direct altitude mea-
surements through the following model

izh = ‖piPCI‖ − rTITAN + nh (6)

where ‖piPCI‖ is the Euclidean norm of the IMU position in
{PCI } and nh is a zero-mean Gaussian white measurement
noise. This is equivalent to nadir terrain radar measurement
over a spherical Titan surface model. Future work should
vary terrain range measurements as a function of spacecraft’s
attitude, and non-spherical surface model, but was considered
beyond the scope of this project at first order. The 3-σ value
of the standard deviation of nh was set to 5% of izh, to match
the maximum error specification of Huygens’ radar altimeter
reported in [16].
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Figure 10. Map matching measurement uncertainty for
the Maracaibo Lacus region.

Figure 11. Feature tracking measurement uncertainty
for the Maracaibo Lacus region.

4. TRN STATE ESTIMATION
We estimate the state of the descent module using sensor
inputs from vision, altimetry and IMU. Vision can provide
image matching with respect to an orbital map, or frame-
to-frame tracks of unmapped terrain features. Our state
estimation architecture is illustrated in the upper right corner
of Figure 5. It is based on an Extended Kalman filter.
This section describes the inertial propagation, as well as the
various sensor update models.

Inertial Propagation

Our state vector can be broken down into two components
x =

[
xI

T xV
T
]T

. We will refer to xI as inertial states,
and xV as vision states. The inertial states

xI =
[
piPCI

T
viPCI

T
qiPCI

T
bg

T ba
T
]T

(7)

include the position, velocity and orientation of the IMU
frame {i} with respect to the {PCI } frame, the gyroscope
biases bg and the accelerometer biases ba. Unit quaternions
are used to model orientations.

Our system dynamics are time-varying and use the IMU

measurements
ṗiPCI = viPCI

v̇iPCI = C(qiPCI)
T (aIMU − ba − na) +

PCIg
q̇iPCI = 1

2Ω(ωIMU − bg − ng)q
i
PCI

ḃg = nbg

ḃa = nba
(8)

where n? are zero-mean Gaussian white random noise repre-
senting the IMU measurement noise and bias random walk.
C(q) denotes the coordinate change matrix associated to a
unit quaternion q. The operator Ω is defined by

Ω(ω) =

[
0 −ωT

ω −bω×c

]
, (9)

where bω×c =

[
0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

]
. (10)

The state estimate and error covariance matrix are propagated
at IMU rate using [12] and [13]. We highlight that this is
a first-order numerical integrator based on our existing im-
plementation. Higher-order numerical integration [14] would
limit error growth during the IMU-only navigation phase but
was considered beyond the scope of this project. Equations 8
show that Titan’s rotation is not modeled in the system. This
was deemed to be a reasonable assumption given Titan’s
slow rotation and the overall EDL duration. Within this
assumption, the {PCI } is equivalent to a terrain-fixed frame.
The gravity vector g was computed using Newton’s point-
mass equation.

Map Matching Visual Update

Map matching refers to the registration of the descent image
onto a map stored in the spacecraft’s on-board computer
memory. This map is constructed apriori from orbital or-
thoimage and elevation data. Map matching for Titan EDL is
investigated in our companion paper [15]. Our state estimator
assumes it is being provided the 3D coordinates of the center
of the matched descent image in the {PCI } frame. This
is equivalent to a 1-landmark minimal point update. Map
matching may be able to provide stronger constraints, but the
authors decided to stick to a conservative design at this point
given the low quality of orbital data available at Titan.

The mapped landmark visual measurement is the pinhole
projection of pj over the normalized image plane f = 1
of camera frame {ci} at time i of the terrain landmark
backprojected from the center of the image

izm =
1

cizm

[
cixm
ciym

]
+ nm (11)

where the cartesian coordinates of the mapped landmark pm
in camera frame {ci} can be related to the map coordinates in
{PCI } by

cipm = [cixm
ciym

cizm]
T (12)

= C(qciPCI)

(PCIxm
PCIym
PCIzm

− pciPCI

)
, (13)

and nm is a zero-mean white Gaussian feature measurement
noise, for which the covariance matrix is derived from [15].
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Feature Tracking Visual Update

The vision states are additional filter states necessary to
process unmapped image feature tracks in Simultaneous Lo-
calization And Mapping (SLAM) fashion. These states

xV =

[
pc1PCI

T ... pcMPCI
T qc1PCI

T ... qcMPCI
T

f1
T ... fN

T
]T

(14)
include the orientations {qciPCI}i and positions {pciPCI}i of
the camera frame with respect to {PCI } at the last M image
time instances, along with the 3D coordinates of N features{
f j

}
j
. Each feature state f j = [αj βj ρj ]

T represents
the inverse-depth parametrization of terrain feature pj with
respect to an anchor pose

{
cij
}

selected from the sliding
window of pose states. The initial inverse-depth probability
distributed is centered on the inverse terrain height estimate
when the feature is observed for the first time.

A feature tracking visual measurement is the pinhole projec-
tion of pj over the normalized image plane f = 1 of camera
frame {ci} at time i

izv,j =
1

cizj

[
cixj
ciyj

]
+ nv (15)

where the cartesian coordinates of feature pj in camera frame
{ci} are related to its inverse-depth parameters in anchor
frame

{
cij
}

through

cipj = [cixj
ciyj

cizj ]
T (16)

= C(qciPCI)

(
p
cij
PCI +

1

ρj
C(q

cij
PCI)

T

[
αj
βj
1

]
− pciPCI

)
,

(17)

and inv is a zero-mean white Gaussian feature measurement
noise, which is derived from our companion paper [15].

Additional implementation details can be found in our previ-
ous work [6, 7].

5. MONTE CARLO SIMULATION RESULTS
To evaluate TRN state estimation performance, a Monte
Carlo simulation was developed for the Maracaibo Lacus
scenario using a Titan direct entry. The initial epoch of the
simulation begins at E-10 min. The sequence of events in the
simulation encompasses a simplified form of the full ConOps
described in Figures 3 and 4. A full entry sequence for a
capsule with zero spin rate is considered. Inertial propagation
of the IMU begins at E-10 min. The drogue parachute
is deployed following peak deceleration at approximately
150 km altitude. Heatshield separation and other parachute
deployments were ignored. At 41 km altitude, the parafoil is
deployed and the VIO phase begins at 40 km. The VIO phase
uses map matching from 40 km to 20 km altitude. Feature
tracking is used from 20 km altitude to ground. During the
VIO phase, the parafoil system follows a straight line flight
for the remainder of the descent to the ground with a 1.9 glide
ratio.

Monte Carlo simulations were executed for a total of 500
trials that included two different map matching schemes. Two

types of map matching updates were considered. The first
scheme uses a single landmark while the second scheme uses
four landmarks to accomplish map matching. While the 4-
landmark case obviously provides more information about
the pose, it may prove challenging to match more than 1
landmark with existing terrain maps in the difficult Titan
conditions, as discussed in our companion paper [15]. The
initial truth and navigation states for each trial at E-10 min
were calculated with the error statistics shown in Figure 12.
State estimation results are presented in terms of Root Sum

Figure 12. Initial state error statistics for EFPA -51◦.

Square (RSS) position and attitude determination error and
standard deviation across all of the Monte Carlo trials. The
results are split into an IMU-only phase and a VIO phase.
The IMU-only phase begins at E-10 min and ends at parafoil
deployment. This is followed by the VIO phase, which
ends at touchdown. The duration of the IMU-only phase
is approximately 2470 sec while the VIO phase duration is
approximately 6105 sec. Figures 13 and 14 show the position

Figure 13. RSS of the position determination error for
each trial as a function of altitude during IMU-only

phase.

and attitude determination errors as a function of altitude for
each of the trials. During this phase, inertial propagation is
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Figure 14. RSS of the attitude determination error for
each trial as a function of altitude during IMU-only

phase.

based on IMU-only. Also, the constant (turn-on) gyro rate
bias is uncorrected at the beginning of the simulation. Error
growth is expected during this dead-reckoning phase due to
the lack of any state updates. Note that the error drift rate
increases at 150 km due to aerodynamic disturbances at peak
deceleration. Two of the trials were selected as bounding
cases that included a case with no sensor errors (blue) and
a case with all sensor errors set to 3-σ (orange) values. These
cases are clearly seen as lower and upper bounds in Figures
13 and 14. Figures 15 and 16 show the resulting standard

Figure 15. Standard deviation over all trials of the RSS
position determination errors during IMU-only phase.

deviation over all of the trials.

Visual processing is initiated after parafoil deployment at 40
km altitude. This includes map matching updates only. At 20
km altitude, state estimation relies solely on feature tracking
updates. Figures 17 and 18 illustrate the large correction
between 40 km and 20 km altitude of the error accumulated
in the IMU-only phase for the 1-landmark case. The errors
reduce as expected during the map matching phase since we
get a pose fixed with respect to the map. Errors increase

Figure 16. Standard deviation over all trials of the RSS
attitude determination errors during IMU-only phase.

Figure 17. RSS of the position determination error for
each trial as a function of altitude during VIO phase

using 1 landmark for map matching.

Figure 18. RSS of the attitude determination error for
each trial as a function of altitude during VIO phase

using 1 landmark for map matching.
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during the feature tracking phase between 20 km altitude and
the ground since feature tracking is subject to drift as un-
mapped features enter and leave the field of view. Figures 19
and 20 show the standard deviation of position and attitude

Figure 19. Standard deviation over all trials of the
position determination errors during VIO phase using 1

landmark for map matching.

Figure 20. Standard deviation over all trials of the
attitude determination errors during VIO phase using 1

landmark for map matching.

determination error during both map matching and feature
tracking phases. Dispersion (in terms of standard deviation)
at touchdown for 1-landmark map matching is approximately
1200 m standard deviation in position and approximately 1.2◦

standard deviation in attitude. It is interesting to note on
Figure 18, that an attitude error is introduced by the estimator
at the start of map matching and mostly remains uncorrected.
We found that this error appeared in the horizontal heading,
which is not constrained in the 1-landmark case, and not
observable during feature tracking. The introduction of that
error was imputed to the non-linearities at start of filter
updates, when errors and their variances are very large and
stress the EKF linearization.

Figures 21 and 22 illustrate VIO phase performance using

Figure 21. RSS of the position determination error for
each trial as a function of altitude during VIO phase

using 4 landmarks for map matching.

Figure 22. RSS of the attitude determination error for
each trial as a function of altitude during VIO phase

using 4 landmarks for map matching.

4-landmark map matching. Dispersion at touchdown with
four landmarks is 100 m in position, and under 0.1◦ in
attitude. The better performance of the 4-landmark case is
not surprising given the information. In particular and unlike
in the 1-landmark case, the full pose is now observable during
the map matching , including the horizontal heading. As can
be seen in Figure 22, although errors are still introduced due
to non-linearites at the beginning of map matching, they are
then observed and corrected. We can conclude that multiple
landmark matching is a key performance driver, improving
accuracy by one order of magnitude.

6. SUMMARY AND FUTURE WORK
In this paper, a Titan mission design and corresponding EDL
architecture was discussed. A complete Titan EDL ConOps
was developed for a 45◦ spherecone aeroshell. This included
entry phase, parachute phase, and descent and landing phases
where a guided parafoil is used in conjuction with TRN
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Figure 23. Standard deviation over all trials of the
position determination errors during VIO phase using 4

landmarks for map matching.

Figure 24. Standard deviation over all trials of the
attitude determination errors during VIO phase using 4

landmarks for map matching.

state estimation. An integrated end-to-end simulation was
constructed using the DSENDS multi-mission simulation
framework to handle the capsule and parafoil dynamics, sen-
sor modeling, ROS interface for state estimation, and Monte
Carlo analysis. The simulation framework is available for
future Titan precision landing studies with different design
points. The results of the Monte Carlo analysis revealed
90 m standard deviation in position determination error and
0.1◦ standard deviation in attitude determination error at
touchdown using 4 landmarks for VIO map matching.

Future work includes evaluation of motion planning and
closed-loop control with TRN state estimation. Several
improvements can also be made to the state estimation algo-
rithm, which include higher order integration, an improved
altimeter model to vary terrain range measurements as a
function of the parafoil attitude, and accounting for Titan
rotation and non-spherical surface model.
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