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SOA Foundations Track Topics
(serial-chain rigid body systems)

1.

2.

Spatial (6D) notation — spatial velocities, forces, inertias; spatial cross-product, rigid body
transformations & properties; parallel axis theorem

Single rigid body dynamics — equations of motion about arbitrary frame using spatial
notation

Serial-chain kinematics — minimal coordinate formulation, hinges, velocity recursions,
Jacobians; first spatial operators; O(N) scatter and gather recursions

Serial-chain dynamics — equations of motion using spatial operators; Newton—Euler mass
matrix factorization; O(N) inverse dynamics

Mass matrix - composite rigid body inertia; forward Lyapunov equation; mass matrix
decomposition; mass matrix computation; alternative inverse dynamics

. Articulated body inertia - Concept and definition; Riccati equation; alternative force

decompositions

Mass matrix factorization and inversion — spatial operator identities; Innovations
factorization of the mass matrix; Inversion of the mass matrix

Recursive forward dynamics — O(N) recursive forward dynamics algorithm; including gravity
and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and |
references on the SOA methodology. @ o nstute ot Tecmelosy
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Recap from last session

* Introduced 6D spatial notation to allow more concise and simpler
handling of linear/angular terms together
« Can work away from CM as needed
* Rigid body transformation matrix
« Generalized 6D cross-product
« Used spatial notation to derive equations of motion of a single rigid body

f(z) = M(z)B4(z) + by(2)

« Equations capture both linear and rotational dynamics and their
coupling

« Used several choices for generalized velocities

 Structure remained the same, variation in gyroscopic term

3 Jet Propulsion Laboratory
: California Institute of Technology



Serial-Chain Rigid Body Kinematics



Outline

* Why serial chains?

* Hinges

» Configuration and velocity recursive kinematics
» Spatial operator representation

» Gather and scatter recursions

» Jacobians



Multibody system topologies

serial-chain
systems

1 parent, 1 child

tree/branched
systems

1 parent, children>1

internal—.
closed loop

closed-chain
systems

multiple parents

@
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Why serial chains?

 Serial-chain rigid body systems are the simplest example of
multibody systems
* However we do want to use SOA to tackle general multibody
systems
* rigid/flex bodies
« arbitrary size and branched topologies
 closed-chain topologies
* |t turns out that the SOA methods developed for the serial-
chain case carry over virtually entirely to the broader class of
multibody systems
* Hence we will focus on serial-chains to simplify notation and

will address generalization later
7 & o onuision tatoraery



Hinges and Constraints
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Inter-connected bodies

 Links/bodies are connected via hinges (aka joints)

(k +1)t" link kth link

pmmm =l
-

Kkt h
hinge
b

Towards Base  Towards Tip >

F 3

Parent body index k+1 > Child body index k;  Tip body has index =1

Jet Propulsion Laboratory
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Generalized coordinates & velocities

* Multibody state is the set of
generalized coordinates and
generalized velocities across
all the hinges

« Often generalized velocities
are just generalized
coordinate time derivatives

* Quasi-velocities are a useful
alternative

10
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Forward Configuration Kinematics



Relative body pose

(k+1)'" link

JPTTEEETRY
R

The relative pose of
connected bodies

" hinge J
(k+1)th (k—1)th
Byio hinge hinge

Towards Base Towards Tip

constant for rigid bodies

/ \

_|_
k+1Tk _ k+1T@k ) @ka — (]{Jrlrﬂ‘@_kF ON T@}{) ) @ka

body to parent _ /
relative pose hinge pose
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Computing the pose of any body

« Forward kinematics problem is to compute the pose of any

body In the system

I,

1.6 1

k+1
= Ty -7 Tk

* The computation of body poses can be done recursively from

base to tip

13

;

for k n---1

I I
Tk — Tk+1

_end loop

HTﬂnL =1

) k+1 Tk

California Institute of Technology



Computing relative pose

The relative pose of any pair of bodies | & k can
also be computed recursively:

i 1.6 k+1
T = Ty --- %7y

14
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Hinge Map Matrix

e
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Hinge differential kinematics

16

Time derivative of the hinge pose

dk+1T@k 15‘3 (13(@]—:?@1() v(@)ia@kJ
dt 0 0

Ao(k) 2 w0500 Av(k) = (07, 0)

relative angular velocity relative linear velocity

California Institute of Technology



Joint map matrix

|| >

7v(kJ V(Ok) —V(0}) = A (K

relative hinge

spatial velocity — H* (k) B (k)

/ generalized

joint map matrix velocity

The joint map matrix maps the (non-dimensional) hinge generalized
velocities to the relative hinge spatial velocity

17 Jet Propulsion Laboratory
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Structure of the joint map matrix

Can partition into angular/linear parts

L
Rb‘Lv(kJ Ay (k) = hv(k)B(kJ

configuration dofs

Tp (k) =Ty (k) can exceed

velocity dofs

18 Jet Propulsion Laboratory
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Examples of joint map matrix

For different types of hinges

0 0 0 0 O 1 0 O
(o) (o) (o) (0 o) 01 o)
1 0 1 1 0 0O 0 1
0 0 0 0 O 0O 0 O
0 0 0 0 O 0O 0 O
\0/ \ 1/ \p / \0 1/ \0 0 0/
rotary pin hinge prismatic hinge helical hinge cylindrical hinge spherical hing
1 dof 1 dof 1 dof 2 dof 3 dof

For a full 6dof hinge, the hinge map matrix is the identity
matrix.

19 Jet Propulsion Laboratory
WAEP California Institute of Technology



Example: Ball rolling on a surface

Rolling, no slipping can be treated as a hinge

Ay + Apl=0 = [—[, Ig}szog

v A N T 5 Rolling means contact point
v has zero linear velocity
H* — I3 c RO%3 _ _ _
T e Joint map matrix not constant in

ball frame, only in inertial frame
* For an ellipsoid H is not constant.

20 Jet Propulsion Laboratory
California Institute of Technology
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Velocity Recursion

Body frame at hinge




Body frame same as hinge frame Oy

(k 4+ 1)t" link kth link

-y
- -
- .

kt h

3 hinge ;
(k—f—l)th (k—l)th
hinge hinge
P Towards Base  Towards Tip >

Bk — @k V[k) = V[Bk) k+1Tk _ k—f—lj[‘l(@;r _ @?T@k

22 Jet Propulsion Laboratory
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Inter-body rigid body transformation matrix

(k4 1)t" link

The rigid body
transformation matrix
from parent to child body

0 I 0
this is / A
i = ¢(Brr1,Bx) = ¢(Bis1.Ok) =

o (1 BB _ (T Ik+1k)
e (1))

oooooooooooooooooooooooooooooo



Body spatial velocity

(k+1)th link

IPEELEEE Y

Propagating body
spatial velocity
across hinges

(k—‘ 1]t|1

hinge

Towards Base Towards Tip

A spatial velocity on the
VJF (kJ — V(Q]—E ) inboard side of the
hinge
1.37

spatial velocity on the

V(k] e V(@k) = V+(k]—|—AV(k) ﬁiur;tggardsideofthe

hinge
24 contribution @Jet Propulsion Laboratory
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Body spatial velocity computation

Body spatial velocities can be computed via
a base-to-tip recursive algorithm

25

Vk) T2 Dk + 1L KV (K + 1) + Ay (k)

op*(k+ 1,K)V(k+ 1) + H*(k)B(k)

( Vin+1)=0
for k n---1
V(k) =¢"(k+1,k)V(k+1) + H"(k)B (k)

Lend loop

Recursive, base-to-tip, O(N) algorithm for the body
spatial velocities

V(1)
Base to tip
recursion
for body V(k)
spatial
velocities V(k +1)

California Institute of Technology
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Velocity Recursion

Body frame not at hinge
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Body frame not at the hinge

With minor alteration, the
recursive body spatial velocity
relationship continues to hold.

>

<

=
|

H* (k)R (k)
¢* (O, Bk )Av (k)

* * hinge spatial velocity referenced to
(b ((D)k’ Bk)H (k') the body frame

= ¢*(k+ 1, k)V(k+ 1)+ A5 (k)
= ¢*(k+ 1, k)V(k + 1) +Hi (k) B (k)

-

-

@
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Inertially referenced body velocities

Can even use inertially referenced
velocities for all the bodies —
simplifies recursion relationship.

Vi(k) =

Vi(k)

|

¢* (O, I)V(Ox)

Hy (k) (k)

— Vi(k + 1) + A% (k)

A

hinge spatial velocity referenced to
the body frame

=Vi(k+1) + Hp(k)B(k)

rigid body transformation matrix not needed!

e

JthI n Laboratory
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Stacked Notation

e

Jet Propulsion Laboratory
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Stacked vectors

- We are Interested in system level properties
- Stack up component quantities into system level vectors

(0(1)
- JE col{@(k)}zzlz 9(:2) e RN
P(k) _e(ﬁ)_
V(k+1)
V(1)
e col{\?(k)}zzlz \7(:2) e ROM
- Vin)

VAN
N 2 Z vy (K) overall i |
30 =1 dofs & soioronutsion taboraer



More stacked vectors

31

* Build up additional system-level stacked vectors

p+ 2 col{vﬂk)}n c RO

VAN

k=1

Av £ col {Av(k)} c RO

k=1

V(k) "= V0K E V() + Ap(k) | Do
V=V + Ay | ssemiee

expression
@ Jet Propulsion Laboratory

California Institute of Technology
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First spatial operators

e
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The 8¢ operator

First operator relating system level spatial velocity stacked vectors

VE(K) 'ET o (Brar, OF ) V(K + 1)
+ __ O
VE=ELV
Rows: parent body
Columns: child body
( 0 0 0 0 0\
$(2.1) 0 0 0
g 2| 0 9.2 0 0 | ¢ ROnxOn
33 \ 0 0 d(n,n—1) 0)

sparse, only one sub-
diagonal with inter-body
rigid transformation
matrix elements

Jet Propulsion Laboratory
California Institute of Technology



The Joint Map operator H

Operator for relative hinge spatial velocities

Ay(k) = H"(k)B (k)

*
Rows: body AV — H e Block-diagonal with joint
Columns: body map matrix elements
[H(1) 0 ... 0 \
n 0 H(2) ... 0
H 2 dla,g{ (k)} — . . . c RN *On
k=1 ; : :
\ 0 0 ... Hm)/
34 & o ropuision atoraory




Structural properties of H

35

* Block-diagonal, and
non-square, RNx6n

» The block-diagonal non- (H(1) 0 ... 0 )
zero entries are the e | 0o
transpose of the
configuration \ 0 0 ... Hm))

dependent joint map
matrices for the body
hinges



Body spatial velocities expression

36

Body spatial velocity expression Is

V(k) “=

3.5

V(Oy) = V7(k)+ Avy(k)

-~

Vi=8V | [Ay

V=ELV+H0




Spatial Operator Recap

V(1)
( Vin+1)=0  recursive
Base (o ;ip < fork = n---1 algorithm
by spa T VK =t (k+ LK)V(k+ 1)+ H (k) (K)
velocities
Vik+1) _ end loop
- / y Implicit
V:€¢V+H 0 relationship
[0 0 0 0 0 [H(1) 0 0 \
d(2,1) 0 0 0 H(2) 0
Eol2 ] 0 (3.2) 0 o| HE| :
\ 0 0 .. dmn—1) 0/ \ o0 H(n) )

37 . @ Jet Prgpulsjon Laboratory
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Operator expression for V

38

While we have operation expression for the system
level spatial velocities, it is implicit!

both sides

7 O\
V=_EyV+H 0

|
(I—&5)V =H*0

How to get rid of this
to get an explicit
expression? @ s oo

oooooooooooooooooooooooooooooo
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Explicit velocity expression

e
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Nilpotent matrices & inverses

» A square matrix U is said to be nilpotent if one of
Its powers becomes 0, i.e. If for some n

u™ =20
 For a nilpotent U, we have

I-W'=T+Uu+u*+ - +u™!

1-resolvent

Series expansion terminates after only a finite number of terms for nilpotent matrix,
hence the 1-resolvent inverse is well defined

40
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Derivation of nilpotent relative inverse

Define
W=I+U+U>+ - +Uu™
Thus

uw =wu=u+u?+ .. sluM=u+uz+ -..

=

and so

[=W—-UW=(I-UW — (I-U)!

41

+utt=w

=W

@
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C¢ IS nilpotent

( 0 0 0 0 0
$(2,1) 0 .. 0
gy 2 0 $(3.2) .. 0 0
K 0 0 d(n,n—1) 0/

En = X . o=y &3 —
X . X X
« At the nth power, the result is zero: ‘c?; = 0

* Hence €y is nilpotent!

42 Jet Propulsion Laboratory
: California Institute of Technology



Structural properties of €

 Strictly lower triangular, square,
sinqular and nilpotent,

* Only the first sub-diagonal has
nonzero elements

 The non-zero entries are the
configuration dependent 6x6
inter-link rigid body transformation
matrices (configuration dependent)

43
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The ¢ spatial operator

( 0 0 0 0 0\
d(2,1) 0 0
co 21 0 0(3.2) 0 0
\ 0 0 .. omn_1) 0/

Sq) IS nilpotent for a tree system, and we can thus define its 1-resolvent

A

$b|= (I1—=E¢) :I+€¢+8¢+...+g$
O S T A
O21) L 0|

Rows: parent body

44 \d)(n,l) dé(n,2) ... I ) Columns: child body & soioropusion atorater
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Structural properties of b

L ower trianqular, square and

Invertible

Entirely generated by € 4,

Has identity matrices on the main
diagonal

The first sub-diagonal has just the
elements of €

The other sub-diagonals are powers
of 8¢.

The lower-triangular entries are
general, configuration dependent
6x6 rigid body transformation
matrices

\p(m,1) ¢(n,2)

¢(Lj) =i i—-1) - d(j+1.j) = ([I)

oooooooooooooooooooooooooooooo



Explict operator expression for body spatial velocities

Begin with earlier implicit expression

(T—&%)V =H*6

3.35

\Y (I—&5) 'HO "= ¢*H"O

V = $*H*O

Explicit operator expression for "/

46
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Operator expression and recursions

Base to tip
recursion for
body spatial
velocities

( Vin+1)=0  O(N) recursive
fork = n---1 algorithm
V(k) =" (k+1,k)V(k+ 1)+ H* (k) B (k)
. end loop

r w. .
o %1 [ % Explicit
V — d) H e relationship

The body spatial velocities can be expressed as a spatial operator
47 expression, and computed via an equivalent recursive algorithm & sopronuson aberaery



Bl

Spatial operator ¢

48

Define the new spatial operator

~ A Same as c|) except diagonal
(b — (1) — I elements are now zero matrices
Claim:
b =CopP =dCy
Derivation:

[=(I-Ep)p=b—Epd = d—TI=d=Epd

California Institute of Technology



Operator expression for V™

S .

Claim: V" = p*H*O

Derivation:
4+ 315 oy
V = 8¢\7
R RCH N

49

W
IFS
}—L

b H* O
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Operator Expressions
to
O(N) Scatter recursions




Base-to-tips structure-based
O(N) scatter recursion

operator transpose/vector product

_ >|<
y o d) X y=ab*x y(1) \
Applies to any x Base to tip
Does not require explicit recursion
computation of ¢ at all
Only depends on elements of &, y(k) =
¢ (k+ 1 k)y(k+1)
+x(k)
( yn+1)=0 /
for k n---1 y(n)
<
y(k) = ¢"(k+ 1, Kjy(k +1) +x(k)
.end loop

Algorithm flow
O(N) structure-based, base-to-tip

51 . @ Jet Prgpulsjon Laboratory
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Derivation of the scatter recursion

Have ( I 0 0\
$(2.1) | 0
y = d*x I 5
\$(m.1) $n.2) I
k
E R
j=—n
k+1
=gt (k+1.k) Y (. k+ Dx(f) +x(k)
ﬂ(m«f) —
3.46

= ¢ (k+ 1, k)ylk+ 1)+ x(k)

52
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Scatter recursion example

Velocity recursion

y=>V

Yy = PTx
|\ x=wé
V = p*H*O
( Vin+1)=0
fork =n---1
| V(k)=¢"(k+1,k)V(k+1)+H"(k)B (k)
. end loop

O(N) scatter recursive algorithm

Jet Propulsion Laboratory
California Institute of Technology



Computational Implications

Some noteworthy observations regarding Y = P*x

* For computation, this product can be computed by a base-to-tip
scatter recursion for any x

« We do not need to compute ¢* at all in order to compute the
product

* The computation cost in O(N), I.e. it only scales linearly with the
number of bodies n

* Any time we encounter a operator expression with such an
operator product, we know how to compute it recursively with
O(N) cost

« Such mapping is a reflection of underlying structure

The auto-mapping of spatial operator expressions into low-cost recursive
54 algorithms will be a recurring theme @ s oo
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Scatter Recursion Example
Body Velocities Computation

V(1)
Base to tip
recursion for V(k)
body spatial
velocities V(k+1)
scatter
algorithm

55

V= ¢*H*0
( Vin+1)=0
fork =n---1
Vik)=¢" (k+ Lk)V(k+1)+H" (k)R (k)

. end loop

@
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Kane’s partial velocities

In the spatial velocities expression

V = $p*H*O
the
(I)*Hﬂc

matrix elements are the “partial velocities” from Kane’'s method.

The key differences with SOA are

 We never need to compute the partial velocities, or either of
the operators explicitly

 We keep the operator factors separate and preserve
structure - unlike Kane’s method where they get mashed up




S7

Operator Expressions
to
O(N) Gather recursions




Tips-to-base structure-based
O(N) gather recursion

operator/vector product

y = dx
» Applies to any x
» Does not require explicit
computation of ¢ at all
- Only depends on elements of &,
( y(0) =0

<fork 1--n /

y(k) = ok, k—1)y(k —1) +x(k)

Lend loop

O(N) structure-based tip-
58 to-base gather recursion

ydm/ y (1)

Tip to base

recursion

Algorithm flow

Jet Propulsion Laboratory
California Institute of Technology



Derivation of gather recursion

Have [ ; 0\
: |
T oo | ¥ o
Thus \ (1) Pmn.2) I)
k
y(k) =Y olk.)x()
3.38 - s
= dkk—1) ) dlk—Li)x() +x(k)
=1 9(%*[3
3.44

59



Gather recursion example
Spatial forces propagation

60

We will encounter
examples of y = ¢x
operator expressions for
external spatial forces
propagation a little later

Tip to base

recursion

y¢x/ y (1)

y(k) =
d(k,k—1)y(k—1)
+x (k)

@

oooooooooooooooooooooooooooooo



61

Additional O(N) recursions

e
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O(N) scatter recursion for (T)*x

Lets say

Leads to O(N) scatter recursion

= ¢ (k+ 1, k)ly(k+1) +x(k+ 1),

y(k)

Derivation

N
y:(j))(:

y(k)

Thus

62

é

e

bx

Example

5y Wwhere Y=0¢"x

= ¢ (k+1,k)y(k+ 1)




O(N) gather recursion for $Xx

Lo

bx

Lets say y

Leads to O(N) gather recursion
y(k) = bk, k—1)ly(k —1) +x(k — 1),

Derivation

y = bx = Epy where Y = ¢x

Thus ylk) = ok, k—1)jy(k —1) -
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Reverse Body Indices

e
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Reversed body indices

65

Lets say

We reverse the body indices

Start with base body index being 1
Parent index < Child index

What is the impact?

California Institute of Technology



Reversed body indices impact on Cq,

(0 /0 0 0 0\

$(2,1) 0 0
co 2| 0 $(3.2) 7. 0 0 ¥ Jn
: : ) nodes
\ 0 0 c[)(n,n{()} |
ket
super-diagonal l Y
P 9\ Kk
(0 dkk+1) 0 0 0 \
Eor = | 0 0 bn—2.n—1) 0 [
0 d(n—1,n)
\0 0 0 0 )

66 Jet Propulsion Laboratory
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Reversed body indices impact on Cg

[0 blk+1) 0 0 0
: : - . . \ AN
Epr = | 0 0 odm—2n—1) 0 nodes .
. 0 d(n—1,n)
\ 0 0 0 o ) 4|
Y
K

* The lower sub-diagonal shifts to
the upper sub-diagonal

* Once again, only parent/child [
entries are non-zero

» Cg¢ is still nilpotent

67 Jet Propulsion Laboratory
California Institute of Technology




Reversed body indices impact on b

« The 1-resolvent of €¢ still
exists

b = (I—Sd))_l AN

- However, ¢ is now upper-
triangular

* The duality with recursive Kk
O(N) algorithm continues to
hold
« Yy =¢"x scatter
Yy = ¢x gather

Index numbering has little fundamental impact! For consistency we will
68 stick to our tip-to-base numbering for now & o onuision tatoraery



What about randomized indices?

« The 1-resolvent of C€¢ still
exists R

AN _ nodes
b= (I—E4)" RS

 However, no longer have (
triangular structure

* The duality with recursive
O(N) algorithm continues to 2
hold
« yYy=¢"x scatter
« Yy = ¢px gather

The operator sparse structure starts to become non-obvious for
69 randomized indices — however it is still there! O iz
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Jacobian operator

e
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Nodes on a body

71

There are typically points of interest on

bodies that we will refer to a nodes, eg.

« End-effector frame for a robot

« Attachment points for actuators and
Sensors

* Reference frames for control
algorithms

The spatial velocity for a node can be obtained
from that of its parent body as follows:

1.41

Vv (0y) b* (k, OL)V(k)

]

oooooooooooooooooooooooooooooo



Pick-Off Operator B

There are times when we need to narrow attention to the nodes

Vig 2 col{vnd(k)}n c R6"na|  node spatial velocities
i=1 _
nodes .~ _ .
b(1,09)
iy 141 : |
A 0 V(0L) = ¢*(k,0)V(K) ‘
B = single node spatial velocity Y
pick-off
operator | 0 |

Vaa = BV

mapping from body to node spatial Velocities
72 @ Jet Propulsion Laboratory
California Institute of Technology




Jacobian Matrix

Combining

AV AT BV and V = d*H*0

we have

Vnd :89 Whel”e 8 é B*d)*H* E R6nnd X N

operator expression for
the Jacobian

Jacobian

The Jacobian relates the generalized velocities to the spatial
velocity of a node of interest

73 JthI n Laboratory
oooooooooooooooooooooooooooooo




74

Example: O(N) compensating torque computation

« Lets say external spatial forces (eg. gravity, task object,
end-effector forces) are being applied on the system, and
we need to apply additional hinge torques to counter
these forces

* The required torques are

A

67 — 8 feXt — Hd)'BfeXt 110des-?-,__f;"
« Can compute using O(N) gather recursion
‘ x(0) = 0 !

for k 1.-n
x(k) = ¢k, k—Dx(k—1)+ Y By, Op)fb (k)

(k) = H(K)x(K)

Lend loop

e
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Transforming SOA operator expressions into recursive algorithms

SOA analysis that Mapping to structure
exploits mathematical based, fast recursive
structure of dynamics algorithms
DvRamics f 4 Low-order
r{) i Transtorme structure-based
prop Expressions algorithms
e General approach ° EXpIOlt St.rUC.ture « Faster
e Concise * Get new insights .« More robust

« Rich vocabulary » Solve new problems

“Structure-based”: Because the pattern of the recursive
algorithms is entirely driven by the underlying multibody topology.

75 @
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Summary

* Discussed minimal coordinate kinematics model
of a rigid body serial-chain
* Introduced stacked notation
* Introduced some spatial operators
 Discussed duality between operator expressions
and O(N) recursive computations:
« y=¢*x: base-to-tip O(N) scatter recursion
 y = ¢x : tip-to-base O(N) gather recursion
* Introduced Jacobian and its operator expression

76
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SOA Foundations Track Topics
(serial-chain rigid body systems)

1.

1

2.

Spatial (6D) notation — spatial velocities, forces, inertias; spatial cross-product,
rigid body transformations & properties; parallel axis theorem

Single rigid body dynamics — equations of motion about arbitrary frame using
Spatial notation

. Serial-chain kinematics — minimal coordinate formulation, hinges, velocity

recursions, Jacobians; first spatial operators; O(N) scatter and gather recursions
Serial-chain dynamics — equations of motion using spatial operators; Newton—
Euler mass matrix factorization; O(N) inverse dynamics; composite rigid body
Inertia; forward Lyapunov equation; mass matrix decomposition; mass matrix
computation; alternative inverse dynamics

. Articulated body inertia - Concept and definition; Riccati equation; alternative

force decompositions

. Mass matrix factorization and inversion — spatial operator identities; Innovations

factorization of the mass matrix; Inversion of the mass matrix

. Recursive forward dynamics — O(N) recursive forward dynamics algorithm;

Including gravity and external forces; inter-body forces identity

Jet Propulsion Laboratory
. California Institute of Technology



