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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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Recap
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Recap

• Developed Newton-Euler factorization of the mass 

matrix

• Introduced CRB inertias for the decomposition of the 

mass matrix and its         computation

• Developed operator form of system equations of motion

• Developed O(N) Newton-Euler inverse dynamics 

algorithm

• Explored inverse dynamics based computation of mass 

matrix, and CRB based inverse dynamics and force 

decompositions
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Background

• We now switch to the forward dynamics problem 

which involves the mass matrix inverse

• While we can directly go the spatial operator route, we 

will take a step back to work at the component level to 

build up some physical intuition 

• This route will involve a new quantity referred to as the 

articulated body inertia

• This and related quantities are the focus of this 

session
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Inter-body force decompositions
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Inter-body spatial force decomposition models

Terminal and Composite Rigid Body models

inertia 

term
residual 

force term
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Inter-body spatial force decompositions

• Ignore Coriolis terms for the moment

• Force decompositions consist of inertia + residual terms

• From the equations of motion we had 

• Using CRBs we have the alternative expression

• The more complex inertia term simplifies the residual force term in the 

force decompositions

• We will see more such decompositions later

depends on kth

body depends on all bodies

depends on outboard

bodies only

depends on outboard

generalized accels
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Why force decompositions?

• Force decompositions provide an opportunity to view the 

dynamics in new ways 
• View the general multibody system as a deviation from a reference 

model

• Composite body inertias provide an alternative way to 

describe the accels/force  relationship and additional insight

• The decompositions also provide a pathway to computational 

algorithms, eg. the CRBs based inverse dynamics algorithms

• The articulated body force decomposition we pursue here will 

provide the basis for the O(N) recursive forward dynamics 

algorithm
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Single body equations of motion 
decomposition
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Terminal body model

• Residual term is zero when the kth 

body is a terminal body. We then have 

the simpler relationship

• In reality, there are outboard bodies, 

and the residual term accounts for the 

interaction with all the outboard bodies
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CRB decomposition



13

Composite body model

• An improvement over terminal body model in not 

ignoring outboard bodies

• Residual term is zero if outboard generalized 

accels are zero, i.e. if outboard bodies are rigid

• The residual term accounts for the non-zero 

generalized accels of the outboard bodies

• The gen accels of the inboard bodies does 

not matter
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Inter-body force decomposition models

Will now develop this model …
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Floppy Articulated body model
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Articulated Body ‘floppy’ model

Question

What is the effective inertia, i.e. the 

force/acceleration relationship at the 

(k+1)th body when the outboard 

bodies are floppy, i.e. the outboard 

body generalized forces are all 0?

Lets first focus on the “floppy” case, i.e. where 

the outboard hinges are free with zero 

generalized forces. Later will allow non-zero 

generalized forces.
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Tip body’s articulated body inertia

• Clearly know the answer for the tip body

• Will use induction based argument to extend to other 

bodies

• So let us assume we have established the ATBI 

relationship for the kth body

articulated body 

inertia (ATBI)
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Induction based derivation - start

Assume we know the relationship for the kth body: 

where
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Induction based derivation - end

Want to establish the relationship for body (k+1)
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Conditions to be met

Condition to be met for kth hinge

• Hinge k (connecting bodies k and (k+1)) is free, 

i.e. its generalized force  is 0, i.e.
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Acceleration relationships

Know             , need to find             &   

Have

and
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Value of        induced by       

Solving for generalized accel at the hinge

where
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Identity

From the definitions

It follows that
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Value of        induced by 

With

have

where
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and          are projections

Claim:             is a projection 

and

Proof:

Since                                     it is a projection too.

Have
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and          projection properties

Identities:

SHOW!
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More projection properties

Claim:

Proof: (of first identity) 

Using

we have

&

SHOW!

Also
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Projection of 

nullifies hinge 

accels for a floppy hinge

removes hinge 

contribution when transmitting 

accel across the floppy hinge

Recall:
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Crossing the hinge with 

ATBI on the inboard 

side of the hinge

Have:
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Identity

Have:
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ATBI Expression

Claim: ATBI for (k+1) body

Proof:

Using                                                             and 
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Floppy decompositions summary
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Defining

Define the articulated body transformation matrix

• is a 6x6 matrix like 

• However it is typically singular

• It depends on hinge properties

• Unlike                    which propagates across rigid bodies,                                    

propagates across articulated bodies
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ATBI Riccati Equation

Claim:

Have

Riccati equation 

The result follows from substituting in 

Proof:

and
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Riccati vs Lyapunov Equations

Riccati equation for ATBI 

Lyapunov equation for CRBs 

Depends on          and

hence have quadratic terms

They look similar, so why 

the different terminology? 
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O(N) recursive gather algorithm for ATBIs

This is a tip to base gather recursion
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Properties of the Articulated Body Inertia
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P(k) is not a spatial inertia

The articulated body inertia P(k) acts like an 
inertia but is not a spatial inertia! 

• It is a dense 6x6, symmetric, positive definite 
matrix
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Comparison with

• is symmetric, but singular and only 

positive semi-definite

SHOW!

• Moreover
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Comparison with other inertias

Also

SHOW!
composite 

body inertia
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ATBI inertia for hinge special cases



42

Special case:  Locked hinge (0 dof)

Parent/child bodies rigidly coupled (no articulation)

• D(k) = 0,    G(k) = 0

• = 0,                = I 

• =  
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Special case:  Uncoupled hinge (6 dof)

Parent/child bodies uncoupled (no constraints)

• D(k) = P(k) = G(k)

• = I,                = 0 

• =  0
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Non-Floppy Articulated body model
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Allowing non-zero generalized forces

• For the floppy model, we assumed that the 

outboard generalized forces were zero and 

had

• What happens when the outboard generalized 

forces are non-zero?

• Look for decomposition of the form:

where

residual to compensate for 

non-zero gen forces
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Tip body’s ATBI decomposition

• Clearly know the answer for the tip body

• Will use induction based argument to extend to other 

bodies

• So let us assume we have established the decomposition 

for the kth body
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Induction based derivation - start

Assume we know the relationship for the kth body: 
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Induction based derivation - end

Want to establish the relationship for body (k+1)



49

Moving to the inboard side of the hinge

Claim:

where

Proof:
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Innovation term

Have

innovation term

re-expression

Define
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Moving to (k+1) body frame

Claim:

with

where

Proof:
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ATBI decomposition summary



53

O(N) recursive gather algorithm for the residual forces

Tip-to-base gather recursion

This, together with earlier recursion for the ATBIs, is 

half the story for the O(N) forward dynamics algorithm!



54

Generalized accelerations

Claim:

Proof:

non-floppiness 

compensating term

For the floppy case we had
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Body spatial accelerations

Claim:

Proof:

non-floppiness 

compensating term

Generally 

have

hence articulated body 

transformation matrix
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ATBI residual for hinge special cases
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Special case:  Locked hinge (0 dof)

Parent/child bodies rigidly coupled (no articulation)

• D(k) = 0,    G(k) = 0

• = 0,                = I 

• =  

• =         =          = 0

• =  

•
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Articulated body model
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Articulated body model

• An improvement over terminal body model in not 

ignoring outboard bodies

• Residual term is zero if outboard generalized 

forces are zero, i.e. if outboard bodies are floppy

• The residual term accounts for the non-zero 

generalized forces of the outboard bodies

• The gen forces of the inboard bodies does 

not matter
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Inter-body spatial force decompositions

• Force decompositions consist of inertia + residual terms

• From the equations of motion we had 

• Using CRBs we have

• Using ATBI we have

depends on kth

body depends on all bodies

depends on outboard

bodies only

depends on outboard

generalized accels

depends on outboard

bodies only

depends on outboard

generalized forces
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Connections to Estimation Theory
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The optimal estimation problem

Consider the noisy, discrete, time-domain dynamical system

white noise 

with covariance 

M(k)

state

timeoutput

state propagation matrix

Estimation problems

• Optimal filtering:  At a given time k, and the past observations T(1) … T(k), 

determine the best estimate z(k) for the state x(k). This is a causal problem.

• Optimal smoothing: Given all observations – past and future, T(1) … T(n), 

determine the best estimate f(k) for x(k). This is an anti-causal problem.
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Role of         and 

x =      w   

x =      x  + w   
Re-expression of the time 

domain relationship

Maping from the full input vector 

to the full state vector 

T = Hx Maping from the full state vector 

to the full output vector 
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Optimal Kalman filter

The optimal filtering process involves the following 

steps at each time instant:

1. Use a Riccati equation to propagate the 

estimation error covariance and define gains to use

2. Use the previous state estimate to predict the state 

at the current time

3. Extract new information (i.e. the innovations term) 

from the current observation

4. Use the innovations term to update the predict to 

compute the filter state estimate
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Correspondence to dynamics

We will use same notation to show correspondence

• Estimation error covariance P(k)

• Riccati equation

• Predict step

• Update step
innovations 

term

optimal filter 

estimate

predict 

term

Riccati equation
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Optimal Kalman smoother

• Based on Bryson-Frazier method

• Uses a recursion going backwards in time

• Uses the stored optimal filter estimates

• Update the filter estimates using the backward 

recursion co-state to compute the smoothed state 

estimate

optimal smoothed estimate

co-state



67

Key covariance quantities

state covariance

output covariance

filter estimate covariance

innovations covariance

innovations alt covariance

filter error covariance

Kalman gain
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Summary

• Developed articulated body model for the 

decomposition of forces

• Defined articulated body inertias and related 

quantities

• Derived expression for residual forces

• Developed O(N) gather algorithm for 

computing these quantities

• Described parallels with estimation theory
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid 

body transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler 

mass matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward 

Lyapunov equation; mass matrix decomposition; mass matrix computation; alternative 

inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity


