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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including 

gravity and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics



4

Recap
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Previous Session Recap

• Used the operator expression for the mass matrix 

inverse to develop the O(N) ATBI forward dynamics 

algorithm

• Described simple way to obtain inter-body forces if 

desired

• Developed extensions for handling gravity and external 

forces

• Developed O(N) generalized hybrid dynamics algorithm 

• Elegant combination of ATBI forward dynamics and 

CRB inverse dynamics
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Serial chain summary
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is nilpotent

• Every power of       results in a matrix with the sub-diagonal shifted 
one step lower

• At the nth power, the result is zero:   

• Hence       is nilpotent!
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System level equations of motion

Combine the operator expressions to obtain the system level 

equations of motion

familiar mass matrix

Coriolis terms

Newton-Euler factorization

Later – These equations of motion hold for any tree/branched system.



Mass Matrix Factorization & Inversion

Analytical operator expression for the mass matrix inverse

Analytical Newton-Euler 

factorization of the  mass matrix 

Analytical Innovations 

factorization of the  mass matrix 

9
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Spatial operator analysis

• Velocity expression

• Jacobian

• Mass matrix NE factorization

• Lyapunov equation for CRBs

• Mass matrix decomposition

• Riccati equation for ATBI

• Several operator identities

• Mass matrix Innovations factorization

• Mass matrix determinant

• Mass matrix inverse and factorization

spatial operators 

family

,      ,                          

,    ,            ,    ,    
Have started to build up a vocabulary of spatial operators that  can be used 

to express and manipulate the structure of dynamics quantities.

Illustrates the rationale for the algebra part of SOA from the analytical 

transformations and simplifications possible using the operators.  
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Recursive Computational Algorithms

• O(N) Gather and scatter recursions pattern

• O(N) Body velocities scatter recursion

• O(N) CRBs gather recursion

• mass matrix computation

• O(N) NE scatter/gather inverse dynamics

• inverse dynamics based mass matrix

• O(N) CRBs based inverse dynamics

• O(N) ATBI gather recursion

• forward dynamics

• O(N) ATBI forward dynamics

• O(N) hybrid dynamics

Can derive such low-cost scatter/gather algorithms usually by 

examination of the spatial operator expressions.



12

Generalization to other multibody systems



13

Generalization to non-serial, non-rigid multibody systems

• So far we have focused on serial-chain, rigid body systems

• We would like to generalize to the more complex

• Non-serial topology systems

• Non-rigid body systems

• Since each such system is sufficiently different in the basic dynamics, 

the process has been to

• Set up the equations of motion for the specific system

• Define the appropriate spatial operators

• Carry out the operator based analysis to develop the 

corresponding expressions and algorithms

• This has been done successfully for the broad class of multibody 

systems leading to mass matrix inverse expressions as well as 

recursive ATBI like algorithms
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Diverse, but similar SOA solutions

• In reality, multibody systems are often a mix of different types

• Rigid/flex bodies

• Regular and flex joints

• Geared joints

• Branching and loops

• Prescribed and non-prescribed motion

• It is daunting – and tedious – to repeat the formulation, analysis, and 

algorithm development process over and over for the many different 

combinations

• Given the common patterns that were clear in the SOA based mass 

matrix factorization inversion and algorithm development across the 

different types we have the question: 

What are the common patterns and properties that make the 

SOA process work across such a broad family of system types?
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Common multibody formulation patterns

• If we can identify such common patterns, then it would considerably 

simplify the analysis and algorithms development burden

• For any new multibody system, we would be able to simply check if 

its dynamics formulation met the requirements, and if so, we would 

automatically be guaranteed that the analysis and algorithms were 

applicable.

• Furthermore, this would also define the essential properties that 

need to be satisfied, and so provide a goal for the upfront 

formulation process to try and meet (eg. constraint embedding).

What are the common patterns and properties that make the SOA 

process work across such a broad family of system types?
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Need to develop an abstraction layer

• Towards this goal, we will take a step back from the multibody 

formulation specifics

• We will develop new ideas and concepts to help develop an abstraction 

layer to capture the common underlying structure

• For this, we turn to graph theory for mathematical tools and language

• The graph theory tools will

• help us avoid starting from square one every time 

• help define what are the minimal requirements for the theory and 

algorithms to apply

• help define what do we need to generalize

• We will find that much of the analysis and algorithm investment we 

made for the “simple” serial-chain, rigid body case carries forward much 

more broadly
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Multibody dynamics and graph theory

• Graph methods have been used in multibody context 

primarily for bookkeeping the topological structure, 

and sometimes for kinematic analysis

• We will take this further and use analytical methods 

from graph theory and apply to multibody problems.
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Graph Theory Background
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Graphs taxonomy

• Graphs are made up of 

nodes and edges

• Directed graph  

(digraph) edges have 

direction

• Directed, acyclic 

graphs (DAGs)

• Trees: nodes have 

unique parent

• Serial-chain; nodes 

have unique children



20

Some definitions for digraphs

• - set of parent nodes for the kth node

• - set of children nodes for the kth node

• root node – a node with no parents

• tip node – a node with no children

• - if node j is an ancestor of node i

• - if node j is not an ancestor of node i

• Nodes i & j are a related node pair if there is a path 

connecting the pair of nodes 

• A tree has a single root node and one or more tip nodes
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Canonical trees

For a tree, a node has at most a single 

parent node

• There is a partial ordering among the 

nodes

• When we use an indexing scheme 

consistent with the partial order, i.e

parent has index greater than that of 

child – the tree is said to be canonical

• We will not rely much on canonical 

indexing

• The canonical concept does not apply to 

general graphs since there is no partial 

ordering available
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Directed acyclic graph (DAG) examples

• Tree nodes are only partially ordered

• Serial-chain nodes have strict ordering

• Can get canonical property by renumbering

child index is 

smaller than 

ancestor index

index within 

branch are 

canonical

our focus so 

far

multiple paths 

connecting a pair 

of nodes

only single path at 

most connecting a 

pair of nodes
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Graph adjacency matrix
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Digraph adjacency matrix

The adjacency matrix for a digraph with n nodes is an nxn

(nodes vs nodes) square matrix 

• The rows and columns are each indexed by the set of nodes

• A matrix element is 1 when the row index node is a direct 

parent of the column index node, and 0 otherwise

• The adjacency matrix fully describes the connectivity topology 

for a graph

An incidence matrix (nodes vs edges) is an alternative 

representation of a graph’s topology.
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Properties of an adjacency matrix

• Non-zero entries along a row represent children nodes

• Non-zero entries along a column represent parent nodes

• For a tree, there can be only a single non-zero entry in a 

column (unique parent)

• A row can have multiple entries for children

• Since a node cannot be its  immediate child and parent, the 

diagonal has 0s

• Similarly, in a tree, a pair of nodes cannot be each others 

parent and child simultaneously, and hence  an adjacency 

matrix and its transpose are disjoint (i.e. no common non-zero 

members)
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Adjacency matrix examples

Adjacency matrices for these trees 
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Properties of an adjacency matrix (contd)

• The adjacency matrix 

is strictly lower-

triangular for a 

canonical tree

• While helpful for 

intuition, we will not be 

needing or requiring 

the canonical property
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Adjacency matrix expressions

• The elements of an adjacency matrix can be 

expressed as

where                denotes the indicator function

whose value is 1 of the condition is true, and 0 

otherwise

• For a tree, this simplifies to (since unique parent)
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Weighted adjacency matrix
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Weighted adjacency matrix

• A weighted adjacency matrix is one where the 1 

entries are replaced with w(i, j) non-zero weight values

• Instead of

we have 

• For a tree graph, this simplifies to

weight
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Tensor notation

• Tensor notation simplifies notation by avoiding the 

need for explicitly showing summations

• For a matrix product 

• For a triple product  

with implicit double summation over the repeated r 

and s indices

tensor notation
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Square of a tree adjacency matrix

Claim:

Derivation: (using tensor notation)

non-zero only when r 

is grandparent of q

product of weights for 

the connecting edge pair
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General powers of a tree adjacency matrix

Claim:

SHOW!

(use induction)

The only non-zero elements of the kth power                are for 

nodes r and q that are exactly k nodes distance apart in the 

graph!

non-zero only when r is 

k-level ancestor of q

Comments:

product of weights along 

the connecting path
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Nilpotency of a tree weighted adjacency matrix

• The only non-zero elements of the kth power                

are for the r and q nodes that are exactly k nodes 

apart in the graph!

• For a tree system with n nodes, the nodes can be 

at most (n-1) nodes part, and hence the nth power

of the weighted adjacency matrix has all zero 

elements!

• Thus the weighted adjacency matrix for a tree 

is nilpotent!
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What about non-tree graph systems?

• The kth power of the weighted adjacency matrix contains 

entries with path length k. 

• If the graph has loops and is not a tree, a node in a loop 

can be be its own ancestor when we go around a loop, 

and this means

• that higher powers can have non-zero elements along 

the diagonal

• also that the higher powers may never vanish

• Thus the weighted adjacency matrix may not be nilpotent

for non-tree systems
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Next steps …
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Recall:         nilpotent operator

• Every power of        results in a matrix with the sub-diagonal 
shifted one step lower

• At the nth power, the result is zero:   

• Hence         is nilpotent!
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Where are we going with this?

• Previously our multibody development was specific to serial chains, and 

our nilpotency based development was based on the structure specific 

to serial-chains

• Also the      nilpotent matrix had square, block matrix elements and 

lower-triangular structure

• Currently we are looking at adjacency matrices for general tree systems

• Have scalar elements, but have generalized to have  weight 

elements instead of just 1 and 0 elements

• Our future steps are to 

• generalize the graph adjacency matrices to ones with block  matrix 

elements

• then circle back and connect up the adjacency matrix development 

with multibody system analysis and SOA operators 



39

Block-Weighted Adjacency (BWA) Matrix
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Generalizing to matrix elements

• So far the adjacency matrices have scalar 

elements

• We now generalize the adjacency matrices to 

have block matrix elements – and refer to 

these as Block-Weighted Adjacency (BWA) 

matrices

• Assign a row dimension (denoted        for the 

kth row) to all rows. This is also the dimension 

of the kth column.
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General BWA matrix elements

• The elements of the BWA matrix can be expressed as 

follows:

• The matrix elements can be non-square

• The non-zero block entries are in the same locations 

as the graph’s adjacency matrix

• The BWA matrix is square with dimension
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Tree BWA matrix elements

For a tree system, each node can have at most one 

parent node, and so the matrix elements expression 

simplifies to:
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Powers of a tree BWA

Claim:

SHOW!

• The structural results from the scalar elements generalize 

entirely to matrix elements

• The only non-zero elements of the kth power                are 

nodes r and q that are k nodes apart in the graph!

non-zero (scalar) only when r is 

k-level ancestor of q

Comments:

Previously, for weighted adjacency matrices

matrix element
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Nilpotency of a tree BWA matrix

• Once again, the only non-zero elements of the kth 

power                  are nodes r and q that are k nodes 

apart in the graph!

• For a tree system with n nodes, the nodes can be at 

most (n-1) nodes part, and hence the nth power has 

all zero elements!

• Thus the BWA matrix for a tree is nilpotent!
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1-resolvent of a Tree BWA
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Recall: Nilpotent matrices & 1-resolvents

• A square matrix      is said to be nilpotent if one 

of its powers becomes 0, i.e. if for some n

• For a nilpotent     , we have

Series expansion truncates after only a finite number of terms for nilpotent matrix, 

hence the 1-resolvent inverse is well defined

1-resolvent
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1-resolvent of a Tree BWA matrix

• Tree BWA matrices are nilpotent

• Hence the 1-resolvent is well defined and given by:

• This is a general result - no requirement that the 

BWA matrix be lower-triangular or only have a major 

sub-diagonal (as earlier for serial-chains case). 

• This applies to all tree BWA matrices

all disjoint



48

Recall: Familiar example of a similar 1-resolvent from multibody 
context

is nilpotent for a serial chain system, and we can thus define its 1-resolvent

Lower triangular with 

inter-body rigid 

transformation matrix 

elements

Rows: parent body

Columns: child body

weights
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Serial-chain       is a tree BWA matrix

Have

that is,

Thus        is a serial-chain BWA matrix with elements 
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is the 1-resolvent of the tree BWA matrix  

From the fact that         is a tree BWA matrix 
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Notational adjustment

• We have shown that a multibody serial-chain       

is a tree BWA matrix.

• Change notation for BWA matrices to more closely 

parallel notation used for serial-chain multibody 

systems

BWA matrix

BWA 1-resolvent
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Sparsity structure of 1-resolvent A

Claim:

Derivation:

is 0 if nodes i and j are unrelated

non-zero entries only for related nodes

(i.e. there is no path 

connecting i & j) 



53

The 1-resolvent A and its transpose

Claim:

Derivation:

and A(j, i)  cannot both be non-zero 

away from the diagonal

is non-zero only if i is an ancestor of j. If 

so, j cannot be an ancestor as well within the tree

This establishes the disjointedness property of the 1-resolvent and its 

transpose without appealing to a “lower triangularity” like property!

Have
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Canonical Serial-Chain example

For a serial-chain, every pair of nodes is related, and hence the lower-triangular 

part of the 1-resolvent is fully dense
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Tree example

For a  tree, not all pairs of nodes are related (eg. 3 

and 5 are un-related), and there are 0 elements for all 

such unrelated pairs leading to structural sparsity.

This tree happens to be canonical, 

but this property is irrelevant.
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Properties of the Tree BWA 1-resolvent
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Semi-group (or chain-rule) property of elements

Claim:

Derivation:
chain

node k can be arbitrary node 

on path connecting i & j
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The       matrix 

Define

Claim:

Derivation:

Use

with
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Similarity transformation of a tree BWA matrix

• Let T be an invertible matrix, then the following is a 

similarity transformation of a BWA matrix

• However, Y may not have the partitioned structure a 

BWA matrix

• The 1-resolvent matrix given by
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Permutation transformation of a tree BWA matrix

• A permutation is a square matrix such that

• A similarity transformation via a permutation matrix 

retains the partitioned structure and is itself a BWA 

matrix with partitioned structure

• A permutation transformation of a BWA matrix 

corresponds to a reordering of the graph node indices, 

which as expected should not effect the BWA property.
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Recap of BWA development

• We have generalized the nilpotency properties and 

1-resolvent existence using BWAs to

• Tree systems with arbitrary branching structure

• Arbitrary size trees

• Block matrix elements

• Non-square block matrix elements

• The next steps connect up the BWA development 

with multibody system analysis and SOA operators 
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Multibody Systems
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Graph representation for multibody systems

• Each body is a graph node, and each hinge a directed edge

• For a multibody system, have a digraph with n nodes and n 

edges

not explicitly 

included as a node 

in the graph
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Examples of multibody graphs

multiple graph options 

for loop systems
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Examples of multibody graphs (contd)



66

Non-canonical serial chains

• For a canonical serial chain, the parent body for 

body k is body k+1, and have

• Not so for non-canonical serial chains
• Need to use the parent body designation

independent of 

indexing convention
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Tree Topology Multibody Systems
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Graph for a tree multibody system

not explicitly 

included as a node 

in the graph
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Serial-chain mbody/BWA matrix connection

Have seen that

is a serial-chain BWA matrix,

with elements 
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Tree velocity kinematics

Body level velocity recurrence

With

we obtain the system-level expression  

Once again       is a tree BWA matrix.
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1-resolvent       for tree mbody system

Can thus convert implicit expression

into explicit form 

using the tree BWA 1-resolvent
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Body-level equations of motion

The kth body force balance expression is

or,

At the operator level,
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Implicit to explicit

Use                            identity to convert implicit 

operator expressions into explicit ones

implicit expressions explicit expressions
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System level equations of motion

Combine the operator expressions to obtain the system level 

equations of motion

familiar mass matrix

Coriolis terms

Newton-Euler factorization
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Comments on tree equations of motion

• The equations of motion  are identical in form at the operator 

level to the serial-chain equations of motion!

• These hold for arbitrary system size and branching

• The differences are

• At the component level we now have to work with multiple 

children bodies

• The operator structure is different – however they are both 

tree BWA matrices
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Comments

• We have been able to generalize the notion of the        and       operators 

& structure from serial chains to trees

• The crucial step was to look at the general property of BWA  matrices 

associated with graphs and to recognize that        is a tree BWA 

matrix

• From the tree BWA property alone we could

• Establish the existence of the 1-resolvent

• Establish sparsity property based on topological structure

• Establish disjointedness property of the 1-resolvent and its transpose

• Establish the chain rule property for the elements of the 1-resolvent

• We did not require canonical indexing, and triangularity assumptions at 

all!
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Comments (contd)

• We have earlier used a canonical serial chain to develop the 

SOA operator analysis and algorithm

• The simple structure of canonical serial-chains allowed us to 

build up the techniques as well as our intuition

• But as we are starting to see, neither the serial-chain, nor the 

canonical nature are really that important

• It is the BWA part that matters

• The specific block entries of the BWA matrix did not matter 

either

• In fact they do not even have to be square or rigid body 

transformation matrices!
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Recap
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Summary

• Used graph theory analytical concepts to define the 

notion of BWA matrices for trees and graphs

• Showed that tree BWA matrices have a well defined 1-

resolvent matrix

• Showed that the        spatial operator for serial chains is 

a tree BWA matrix

• Developed equations of motion for a tree system using 

tree BWA operators

• The spatial operator expressions remain unchanged from 

serial to tree systems
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics


