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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics
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Recap
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Previous Session Recap

• Built upon BWA concepts to define SKO and SPO operators 

for multibody systems

• Defined the general class of SKO-models for multibody 

systems

• Showed the virtually all the analysis and algorithms 

developed for serial-chain, rigi-body systems carries over to 

SKO models with only minor generalizations

• This opens the door for applying the operator methods and 

algorithms to any multibody system with an SKO model

• As we will see, this is a very broad class of multibody 

systems



Closed-Chain Dynamics
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Closed-chain multibody systems

• Our development so far has focused 

on multibody systems that have SKO 

models 

• Serial-chain systems

• Branched tree systems

• The underlying bodies topology has 

that been of a tree

• Closed-chain system topologies have 

loops, and hence do not have tree 

structure or an obvious SKO model



Example Closed-Chain Dynamics Mechanisms
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Suspension system example

Multiple closed-loops



Closed Chain Modeling Options

FA model TA model CE model

Non-minimal coords

+ constraints

Simple  setup

Minimal tree coords

+ constraints

Better for large loops

Minimal coords

Optimal for small loops

10



11

Constraints

• Bilateral constraints: Defined by an equality relationship

• eg. mechanism loops

• always active when present

• Hinges are actual a dual way of describing a bilateral 

constraint

• Unilateral constraints: Defined by inequality constraint 

• eg. contact/collision dynamics

• can be active/inactive based on the current state
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Holonomic Bilateral Constraints

Smooth constraint on the coordinates

Reduces dofs from       to                   dimension. 

Differentiating: 
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Non-holonomic Bilateral Constraints

The constraints are expressed directly at the velocity 

level:
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Closed-chain Equations of Motion

Using Lagrange multipliers, DAE form of the equations of motion is:

The dimension of the Lagrange multipliers and the row 

dimension of       increases with increase in number of cut-joints. 

The Lagrange multipliers are the inter-body constraint forces 

for the cut-joints.
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Rearranged matrix form

Using Lagrange multipliers, DAE form

have
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Solution Approaches
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1. Projection solution method

• Switch to minimal coordinates form

• Pick              of the coordinates as 

independent variables

• Numerically project the equations 

of motion down to these 

independent variables

• Solve these equations of motion 

and lift up the solution to get all 

coordinate accels

• Expensive process, and has issues 

with picking indep coords
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Projection method details

The main idea is to numerically project the dynamics down to a 

minimal set of coordinates and hence eliminate the explicit constraints

reduced minimal 

coordinates

projected 

mass 

matrix

projected 

equations of 

motion
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Projection method comments

• The projected methods is a minimal coordinates, 

and hence ODE approach

• However, the mass matrix is obtained by a 

numerical projection approach – which destroys all 

structure, and we are left with an expensive to 

compute mass matrix, with opaque structure

• The lack of structure means that SKO models are 

not applicable and the recursive techniques cannot 

be used
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2. Direct solution method

• Set up and solve this equation 

numerically

• Usually used by absolute 

coordinate approaches which use 

maximal cuts so have individual 

bodies

• The “tree” system mass matrix is 

constant & sparse and consists 

of independent bodies
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3. Augmented solution method

• Use minimal number of joint 

cuts so have a spanning tree + 

cut-joint constraints

• The tree system is a minimal 

coordinate multibody system 

with a configuration dependent 

mass matrix
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4. Constraint embedding solution approach

• Structure based minimal 

coordinate approach

• Uses graph 

transformation and 

variable geometry 

bodies

• Will cover later …
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Augmented Solution Method
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Augmented solution approach

Have

Inverse expression



25

Rearranged solution equations

Spanning tree “free” gen accels

Constraint forces

Correction gen accels

Constraint violation 

accels

true gen accels
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Simplified dynamics equations

Tree forward dynamics

complex expression



27

Augmented algorithm overview

1. Use O(N) method to solve                   for 

“free” generalized accels

2. Compute                   and use to solve for 

the Lagrange multipliers in

3. Use O(N) method to solve                              

for correction generalized accels

4. Combine the free and correction 

generalized accels in  

Non-minimal coordinates, DAE approach. Still can use 

SKO methods for the spanning tree SKO model
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Mass matrix – but singular

Mass matrix singularity is a consequence of the non-minimal 

coordinates, DAE approach.
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Augmented Dynamics with Loop 
Constraints
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Single loop constraint

For loop constraints, the constraint is on the relative motion 

across bodies

or

With

have
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Loop-constraints can change over time



Recall:       Pick-Off Operator

There are times when we need to narrow attention to the nodes

pick-off 

operator

mapping from body to node spatial velocities

single node spatial velocity

node spatial velocities
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Recall: Jacobian Matrix

The Jacobian relates the generalized velocities to the spatial 
velocity of one or more nodes of interest

Jacobian

Combining

and

we have

operator expression for 

the Jacobian
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Constraint matrix with loop constraints

and

Hence
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Recall: dynamics equations

Complex, so we look 

for more simplification
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operator simplification

Have

Thus, 

where

is much much simpler than where we started, but we can do better

and
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Operator simplification (contd)

identity
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Simplified equations of motion

Simpler, but still complex, so we continue look for more simplification
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Simplifying 



40

Operational space terminology

aka Operational Space Inertia 

Matrix (OSIM) in robotics

aka Operational Space 

Compliance Matrix (OSCM)

where

simpler operator 

expression

aka Extended Operational 

Space Compliance Matrix 

(EOSCM)
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Why Operational Space? Robotics motivation

• The operational space (Khatib) is 

defined as the task space, that is 

the world viewed from the end-

effector that actually interacts with 

the world

• Generalization to multiple “end-

effectors” for legged robots – where 

legs meet the ground

• Related to area of “whole-body 

motion control”

• OSCM always exists, but may be 

singular. Hence the OSIM may not 

always exist

Effective task space mass matrix 

reflected to the nodes of interest
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Focus on       EOSCM 

The EOSCM contains the Backwards Lyapunov form:

block-diagonal

The EOSCM is a mapping from external spatial forces at the 

nodes to the induced spatial accels at the nodes
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Generalized Backward Lyapunov Equation 
for SKO Models
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Generalized Forward Lyapunov decomposition

With A & B being SPO operators, and X block diagonal, then 

Like CRB
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Look at the                      product 

• This product is the dual to the                    

product used for understanding the mass 

matrix structure

• Why is this dual product important?

• It shows up in products of the          

form in dynamics analysis

• One example in cut-joint closed-chain 

dynamics computations

• Another example is that of operational 

space dynamics in robotics   
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Generalized Backward Lyapunov docomposition

Dual to the forward Lyapunov decomposition

block 

diagonal
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Diagonal terms

The block-diagonal Y terms can be computed via a O(N) 

scatter algorithm
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General expression for the elements

diagonal
related bodies

unrelated bodies

OR
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Derivation
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Algorithm Structure

diagonal 

elements

related 

elements

unrelated 

elements
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Serial-chain case simplification

All bodies are related in a serial-chain, and hence

X

all zero

block-diagonal
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Back to Extended Operational Space 
Compliance Matrix



53

Applying the Backward Lyapunov decomposition to the EOSCM 
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Component values
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Scatter Algorithm Structure

diagonal 

elements

related 

elements

unrelated 

elements

Another example of low-cost algorithms developed from the SOA methodology. This 

is the fastest available algorithm to date for the EOSCM. 
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Serial-chain simplification

For a serial-chain system, the R term is zero. Thus
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simplification steps summary

Avoids computation and inversion of mass matrix, 

and expensive products

Reduces SPO products from 4 down to 2

Reduces costs to O(N^2) using the       block-diagonal term

Reduces costs to O(N) and just the cut-joint terms

Significant reduction in cost by exploiting 

structure using SOA operators
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Back to Augmented Dynamics with 
Loop Constraints
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Recap

aka Operational Space Inertia 

Matrix (OSIM) in robotics

aka Operational Space 

Compliance Matrix (OSCM)

where

simpler operator 

expression

aka Extended Operational 

Space Compliance Matrix 

(EOSCM)
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Low-cost recursive algorithms

O(N) ATBI forward 

dynamics

EOSCM recursive 

computation
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Augmented method comments

• Even though the augmented method approach does not lend itself 

directly to be SKO model, we find that the SKO algorithms can be used 

to efficiently carry out each of the augmented method steps

• The minimal cuts augmented method is much better than the maximal

cuts approach

• We can take advantage of the fast SKO method

• Smaller number of constraints to manage error for

• Changing of constraints are easily accommodated by the SKO gather & 

scatter algorithms

• The augmented approach still remains a non-minimal coordinates and 

DAE approach

• Hence some type of error control (eg. Baumgarte, projection, implicit 

method) is needed when integrating
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Recap
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Summary

• Looked into the augmented method for closed-chain 

dynamics (DAE approach)

• Does not have a direct SKO model

• Introduced the notion of operational space inertia 

matrix (OSIM) and OSCIM

• Discussed the Backward Lyapunov Equation based 

operator decomposition

• Applied SKO model recursive algorithms for the 

various steps in the augmented approach
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to multibody 

systems

9. Tree topology systems – generalization to tree topology rigid body systems, 

SKO/SPO operators, gather/scatter algorithms

10.Closed-chain dynamics (cut-joint) – holonomic and non-holonomic 

constraints, cut-joint method, operational space inertia, projected dynamics

11.Closed-chain dynamics (constraint embedding) – constraint embedding for 

graph transformation, minimal coordinate closed-chain dynamics

12.Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics


