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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to 

multibody systems

9. Multibody graph systems – generalization to tree topology rigid 

body systems, SKO/SPO operators, gather/scatter algorithms

10. Closed-chain dynamics (cut-joint) – holonomic and non-

holonomic constraints, cut-joint method, operational space inertias, 

projected dynamics

11. Closed-chain dynamics (constraint embedding) – multibody 

graph transformations, constraint embedding for graph 

transformation, minimal coordinate closed-chain dynamics

12. Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics
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Recap



• Developed notions of graph partitioning

• Applied these to partitioning SKO models

• Defined conditions for partitioning to preserve tree 

structure

• Developed notion of subgraph aggregation

• Derived SKO model for aggregated graph

• Built constraint embedding idea on notion of subgraph 

aggregation

• Developed SKO model for closed-loop systems using 

constraint embedding
5

Previous Session Recap



• Observations on the SKO model for constraint 

embedding:

• The SKO operator elements are not 6x6 (for 

aggregated bodies)

• The elements are not square or invertible

• The elements size can vary from row to row
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Comments



Single Flexible Body: Nodal Model 
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Flexible bodies

• So far we have focused on multibody systems with rigid 

bodies

• Rigidity is an idealization, and often bodies can have non-

negligible deformation that needs to be included in the 

dynamics model

• We focus here on extending our development to lumped 

models for flexible bodies undergoing small deformation 

• Our goal is to develop an SKO model for such flexible body 

systems

• Once we have an SKO model, all the associated analysis 

and recursive algorithms will follow
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A typical flexible body – nodal model

Think of a flexible body as a collection of rigid nodes (often point masses) 

connected by springs.

Use a floating frame of reference for the body



Nodal equations of motion (node frame)
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SIngle node      properties

Each node can undergo translational and rotational deformations

Rotational deformation

:   jth node on kth body 
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Node spatial inertia

A node’s spatial inertia (in local node frame)

The node’s spatial inertia (in body frame)
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Flexible body node velocity kinematics

nodal deformation 

spatial velocity 

nodal inertial 

spatial velocity 

body frame’s inertial 

spatial velocity 

rigid body transformation 

matrix for the node
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Individual node equations of motion

Standard rigid body equations of motion for a single node in the 

nodal frame

inter-node elastic 

deformation spatial force

nodal gyroscopic 

spatial force

At this point the node equations of motion are in their own local 

(and different) frames

nodal spatial accel



Nodal equations of motion (body frame)
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Common body frame

• Instead of working with equations of motion 

with respect to individual node frames, want 

equations of motion wrt a common frame

• We will do so wrt the body floating frame
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Nodal spatial acceleration expression

nodal spatial 

accel in terms of 

body spatial accel

Coriolis accel term

nodal deformation 

spatial accel

body frame 

spatial accel
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Nodal equations of motion using common body frame

to get transformed equations of motion

velocity dependent 

spatial force 

Had

Use
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Modal representation at the node level
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Modal representation 

• A small deformation assumption, allows us to use 

linear expressions for rotational deformations

• The linearity allows us to use ‘modes’ as an 

alternative way to describe the deformation of the 

nodes on the body

• Modes are very useful since truncation can be used 

to develop reduced order models – especially for 

control system development
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Modal expansion

Small rotational deformation linearity assumption

modal expansion of 

node deformation  

small rotational  deformation linear approximation

modal influence vector for the 

rth mode at the jth node  

modal coordinates  



22

Bending mode example

Launch vehicle example
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Matrix form reexpression

modal influence matrix 

for the jth node  

modal coordinates to jth node 

deformation mapping  

deformation velocity level 

mapping  
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Modal representation at the body level
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Stacked vector across body nodes

stacked vector deformation expressions  
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All node velocities

stacked vector of nodal spatial 

velocities  

stacked vector of nodal spatial 

velocities from body and 

deformation spatial velocities 
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Velocity for a flexible body

• For a rigid body, the spatial velocity serves as its body  velocity

• For a flexible body, we augment it with the deformation velocity 

coordinates

• Mapping from body velocity to nodal velocities
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Body kinetic energy expression
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Flexible body equations of motion

Gathering together the individual node equations of 

motion, we have

Modal integrals can be computed offline and used to 

simplify the computation of the terms in these 

equations of motion
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Back to multibody system
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Coupled flexible bodies

Large articulation, small deformation



32

Towards an SKO model

• Assume serial chain for notational simplicity

• A key step in the development of an SKO model is 

identifying its SKO operator

• The elements of the SKO operator are defined by the 

coefficient matrices involved in a recursive velocity 

relationship from parent to child body

• For rigid bodies this took the form

• Want to extend this to flexible bodies 
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Expression for body frame spatial velocity in terms of parent 
velocities

parent body deformation 

contribution 
parent body rigid body 

motion contribution 

child body deformation 

contribution 
hinge articulation 

contribution 

flexible child 

body velocity
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Recursive velocity expression

generalized inter-body transformation matrix generalized joint map matrix 
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Comments

• This is the recursive velocity expression we are 

looking for that helps us identify the elements of the 

SKO operator

• The elements row-size 6+the number of modes in 

the body

• Hence the row-size can vary from body to body
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SKO/SPO operators for serial-chain of flexible bodies

SKO operator

SPO operator



SKO model equations of motion

Mass matrix
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SKO model for tree flexible multibody systems

• We have satisfied all the requirement for an SKO 

model

• Tree structure

• SKO and SPO operator

• Remaining spatial operators and operator forms 

of the equations of motion

• Operator expressions for the mass matrix and 

Coriolis terms

• All of the analysis and algorithms for SKO models 

carry over to flexible body systems
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Recursive inverse dynamics

scatter recursions

gather recursions
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ATBI Expressions & Analysis
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Flexible body ATBI recursion
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ATBI operators
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ATBI SPO operator
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Mass matrix inversion
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ATBI forward dynamics

scatter recursion

gather recursion
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Optimization

• All of the SKO model algorithms apply directly

• However there is further optimization possible based 

on the sparsity of 

• Furthermore, modal integrals can be used to simplify 

the evaluation of the gyroscopic terms
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Recap
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Summary

• Introduced flexible bodies

• Showed nodal formulation followed by modal 

formulation for a flexible body

• Developed equations of motion for a single body

• Developed recursive expressions for body velocities, 

leading to an SKO model for tree systems

• Summarized applicability of SKO model analysis and 

algorithms to flex body systems
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SOA Foundations Track Topics 
(serial-chain rigid body systems)

1. Spatial (6D) notation – spatial velocities, forces, inertias; spatial cross-product, rigid body 

transformations & properties; parallel axis theorem

2. Single rigid body dynamics – equations of motion about arbitrary frame using spatial 

notation

3. Serial-chain kinematics – minimal coordinate formulation, hinges, velocity recursions, 

Jacobians; first spatial operators; O(N) scatter and gather recursions

4. Serial-chain dynamics – equations of motion using spatial operators; Newton–Euler mass 

matrix factorization; O(N) inverse dynamics; composite rigid body inertia; forward Lyapunov

equation; mass matrix decomposition; mass matrix computation; alternative inverse dynamics

5. Articulated body inertia - Concept and definition; Riccati equation; alternative force 

decompositions

6. Mass matrix factorization and inversion – spatial operator identities; Innovations 

factorization of the mass matrix; Inversion of the mass matrix

7. Recursive forward dynamics – O(N) recursive forward dynamics algorithm; including gravity 

and external forces; inter-body forces identity

See https://dartslab.jpl.nasa.gov/References/index.php for publications and 

references on the SOA methodology.

https://dartslab.jpl.nasa.gov/References/index.php
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SOA Generalization Track Topics 

8. Graph theory based structure – BWA matrices, connection to 

multibody systems

9. Multibody graph systems – generalization to tree topology rigid 

body systems, SKO/SPO operators, gather/scatter algorithms

10. Closed-chain dynamics (cut-joint) – holonomic and non-

holonomic constraints, cut-joint method, operational space inertias, 

projected dynamics

11. Closed-chain dynamics (constraint embedding) – Multibody 

topology transformation and decomposition, aggregation, geared 

systems, constraint embedding for graph transformation, minimal 

coordinate closed-chain dynamics

12. Flexible body dynamics – Extension to flexible bodies, modal 

representations, recursive flexible body dynamics


