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Abstract

A recently developed spatial operator algebra for manipulator modeling, control and tra-

jectory design is discussed. The elements of this algebra are linear operators whose domain and

range spaces consist of forces, moments, velocities, and accelerations. The e�ect of these operators

is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can

be e�ciently obtained via techniques of recursive �ltering and smoothing. The operator algebra

provides a high-level framework for describing the dynamic and kinematic behavior of a manipu-

lator and for control and trajectory design algorithms. The interpretation of expressions within

the algebraic framework leads to enhanced conceptual and physical understanding of manipulator

dynamics and kinematics. Furthermore, implementable recursive algorithms can be immediately

derived from the abstract operator expressions by inspection. Thus, the transition from an abstract

problem formulation and solution to the detailed mechanization of speci�c algorithms is greatly

simpli�ed.

1 Introduction: A Spatial Operator Algebra

A new approach to the modeling and analysis of systems of rigid bodies interacting among them-

selves and their environment has recently been developed in Rodriguez (1987a) and

Rodriguez and Kreutz-Delgado (1992b). This work develops a framework for clearly understand-

ing issues relating to the kinematics, dynamics and control of manipulators in dynamic interaction

with each other, while keeping the complexity involved in analyzing such systems to manageable

proportions.

The analysis given in Rodriguez (1987a) and Rodriguez and Kreutz-Delgado (1992b) has

shown that certain linear operators are always present in the dynamical and kinematical equations of

robot arms. These operators are called \spatial operators" since they show how forces, velocities,

and accelerations propagate through space from one rigid body to the next. Not only do the

operators have obvious physical interpretations, but they are implicitly equivalent to tip-to-base or

base-to-tip recursions which, if needed, can be immediately turned into implementable algorithms
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by projecting them onto appropriate coordinate frames.

Compositions of spatial operators, when allowed to operate on functions of the joint veloc-

ities and accelerations, result in the dynamical equations of motion which arise from a Lagrangian

analysis. The fact that the operators have equivalent recursive algorithms is a generalization of

the well-known equivalence (described in Silver (1982)) between the Lagrangian and recursive

Newton-Euler approaches to manipulator dynamics. The operator-based formulation of robot dy-

namics leads to an integration of these two approaches, so that analytical expressions can be shown

to almost always have implicit, and obvious, recursive equivalents which are straightforward to

mechanize.

The essential ingredients of the operator algebra are the operations of addition and multi-

plication (see Roman (1975), Rudin (1973)). There is also an \adjoint," or \*", operator which

can operate on elements of the spatial algebra. If a spatial operator A is \causal," in the sense

that it implies an inward recursion, then its adjoint A� is \anticausal." An anticausal operation

implies an outward recursion. Operator inversion is also de�ned in the spatial operator algebra.

For an arbitrary �nite dimensional linear operator, inversion is achieved by the traditional tech-

niques of linear algebra. However, many important spatial operators encountered in multibody

dynamics belong to a class that can be factored as the product of a causal operator, a diagonal

operator, and an anticausal operator. For these operators, inversion can often be achieved using the

inward/outward sweep solutions of spatially recursive Kalman �ltering and smoothing described in

Rodriguez (1987a), Rodriguez and Kreutz-Delgado (1992b) and Anderson and Moore (1979).

That the equations of multibody dynamics can be completely described by an algebra of

spatial operators is certainly of mathematical interest. However, the signi�cance of this result

goes beyond the mathematics and is useful in a very practical sense. The spatial operator algebra

provides a convenient means to manipulate the equations describing multibody behavior at a very

high level of abstraction. This liberates the user from the excruciating detail involved in more

traditional approaches to multibody dynamics where often one \can't see the forest for the trees."

Furthermore, at any stage of an abstract manipulation of equations, spatially recursive algorithms to

implement the operator expressions can be readily obtained by inspection. Therefore the transition

from abstract operator mathematics to practical implementation is straightforward to perform and

often requires only a simple mental exercise. When applied to the dynamical analysis of an n

link manipulator, the algebra typically leads to O(n) recursive algorithms. However, numerical

e�ciency is not the main motivation for its development. What the algebra primarily o�ers is a

powerful mathematical framework that because of its simplicity is believed to have great potential

for addressing advanced control and motion planning problems ( Rodriguez (1989c)).

To illustrate the use of the spatial operators, several applications of the algebra to robotics

will be presented: 1) an operator representation of the manipulator Jacobian matrix; 2) the robot

dynamical equations formulated in terms of the spatial algebra, showing the equivalence between the

recursive Newton-Euler and Lagrangian formulations of robot dynamics in a far more transparent

way than before; 3) the operator factorization and inversion of the manipulator mass matrix which

immediately results in O(n) recursive forward dynamics algorithms for an n link serial manipulator;
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4) the joint accelerations of a manipulator due to a tip contact force; 5) the recursive computation

of the equivalent mass matrix as seen at the tip of a manipulator, referred to by Khatib (1985)

as the operational space inertia matrix; 6) recursive forward dynamics of a closed chain system.

Finally, we discuss additional applications and research involving the spatial operator algebra.

2 The Jacobian Operator

Consider an n link serial chain manipulator. After de�ning a link spatial velocity to be V (k) =

col[!(k); v(k)] 2 R6, the recursion which describes the relationship between joint angle rates, _� =

col[ _�(1); � � � ; _�(n)], and link velocities, V = col[V (1); � � � ; V (n)] is (see Rodriguez and Kreutz-Delgado (1992b),

Craig (1986)):

8>>>>>>>>><
>>>>>>>>>:

V (n+ 1) = 0

for k = n � � � 1

V (k) = ��(k + 1; k)V (k + 1) +H�(k) _�(k)

end loop

V (0) = ��(1; 0)V (1)

H(k) = [h�(k) 0 0 0] where h(k) 2 R3 is the unit vector in the direction of the kth joint axis.

�(k + 1; k) is de�ned as

�(k + 1; k) =

0
B@ I ~l(k + 1; k)

0 I

1
CA

where l(k+1; k) is the vector from the (k+1)th joint to the kth joint. Thus, ��(k+1; k) is the Jacobian

which transforms velocities across a rigid link. This recursion represents a base-to-tip recursion

which shows how link velocities propagate outward to the tip, point \0" on link 1, from the base \link

n+ 1." This assumes for simplicity that the base has zero velocity. Note that the link numbering

convention used here, and in Rodriguez (1987a) and Rodriguez and Kreutz-Delgado (1992b),

increases from the tip to the base unlike the numbering convention described in most robotics

textbooks such as Craig (1986). This convention makes it easier to describe the recursive algorithms

presented in this paper.

Summation of the above recursion leads to

V (k) =
nX
i=k

��(i; k)H�(i) _�(i)
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where the facts that �(i; i) = I and �(i; j) � �(j; k) = �(i; k) have been used. Also note that

��1(i; j) = �(j; i). This naturally suggests that we de�ne the \operators"H� = diag[H�(1); � � � ;H�(n)],

B� = [��(1; 0); 0; � � � ; 0] and

�
4
=

0
BBBBBBBBB@

I 0 0 � � � 0

�(2; 1) I 0 � � � 0

...
...

. . .
... 0

�(n; 1) �(n; 2) � � � � � � I

1
CCCCCCCCCA

This results in V (0) = B���H� _� or

V (0) = J _�; where J = B���H� (2.1)

The Jacobian operator J in (2.1) is seen to be the product of three operators B�, �� and H�.

The operator H�, being block diagonal, is called \memoryless" or nonrecursive. The operator B�

projects out the link 1 velocity V (1) of the composite velocity V and propagates it to the tip

location at point 0. The operator � is lower block triangular, which we denote as \causal," and

�� is upper block triangular and hence \anticausal." �� represents a propagation of link velocities

from the base to the tip, which is viewed as the anticausal direction, as opposed to the tip-to-base

recursion represented by � which is denoted as causal.

The action of the Jacobian operator on the joint angle rates _� then is as follows: (1) H� _�

results in relative spatial velocities between the links along the joint axes; (2) �� then anticausally

propagates these relative velocities from the base to the tip to form the link spatial velocities

V = col[V (1); � � � ; V (n)]; and (3) B� then projects out V (1) from V and propagates it to the tip

forming V (0).

The well-known ( Craig (1986)) dual relationship to V (0) = J _� is T = J�f(0) = H�Bf(0),

where f(0) = col[N(0); F (0)] 2 R6 is a spatial force which represents the tip interaction with the

environment. The action of J� on f(0) is as follows: (1) B takes f(0) to col[f(1); 0; � � � ; 0]; (2)

� propagates f(1) causally from link 1 to the base forming the interaction spatial forces between

neighbouring links represented by f = col[f(1); � � � ; f(n)]; and (3) H projects each component of

f , f(k), onto joint axis H�(k) = h(k) to obtain the joint moments T = col[T (1); � � � ; T (n)].

The key points to note here are that J and J� have operator factorizations which have

immediate physical interpretations and obvious recursive algorithmic equivalents. Working with

the factorized version of J , one can manipulate expressions involving J in new ways while main-

taining the physical insight provided by the factors and the ability to produce equivalent recursive

algorithms at key steps of a calculation. For example, using the techniques of the spatial operator

algebra, one can �nd algorithms for e�cient recursive construction of J , JJ�, J�J , and (when an

arm is nonredundant and nonsingular) (J�J)�1 (see Rodriguez and Scheid (1987)).
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3 An Operator Formulated Robot Dynamics

Consider the following equations of motion for an n link serial manipulator in a gravity-free envi-

ronment with the tip imparting a spatial force f(0) to the external environment:

M�� + C + J�f(0) = T (3.1)

C denotes \bias" torques due to the velocity dependent Coriolis and centrifugal e�ects. (3.1) is

precisely the form that arises from a Lagrangian analysis of manipulator dynamics. (3.1) has an

operator interpretation which arises from the following spatial operator factorizations ofM, C, and

J�

M = H�M��H� (3.2)

C = H�(M��a+ b) (3.3)

J� = H�B (3.4)

These factorizations are derived in Rodriguez and Kreutz-Delgado (1992b). The mass matrix

factorization in (3.2) is called the Newton-Euler factorization for reasons to be discussed below.

The quantity

M = diag[M(1); � � � ;M(n)]

is made up of the spatial inertia M(k) associated with each link of the manipulator. M , being

block diagonal, is interpreted as a memoryless operator. For a given link k, M(k) has the form

M(k) =

0
B@ J (k) m(k)ep(k)
�m(k)ep(k) m(k)I

1
CA

where: J (k) is the inertia tensor of link k about joint k; m(k) is the link k mass; and p(k) is the

3-vector from joint k to the link k mass center. The \tilde" operator is de�ned by exy = x � y

for any 3-vectors x and y. In (3.3), a = col[a(1); � � � ; a(n)] and b = col[b(1); � � � ; b(n)] are known

quadratic functions of the link spatial velocities. The operators H, �, and B were described in the

previous section.

When (3.1) is given an operator interpretation via (3.2){(3.4), it is immediately apparent

that (3.1) is functionally identical to the Newton-Euler recursions given in Rodriguez and Kreutz-Delgado (1992b),
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Craig (1986) and Luh, Walker and Paul (1980):

8>>>>>>>>><
>>>>>>>>>:

�(n+ 1) = 0

for k = n � � � 1

�(k) = ��(k + 1; k)�(k + 1) +H�(k)��(k) + a(k)

end loop

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

f(0) = fext

for k = 1 � � �n

f(k) = �(k; k � 1)f(k � 1) +M(k)�(k) + b(k)

T (k) = H(k)f(k)

end loop

where � = col[�(1); � � � ; �(n)], and �(k) = _V (k) denotes the spatial acceleration of link k.

To make this equivalence clearer, consider the \bias-free" manipulator dynamics given by

M�� = T 0 (3.5)

This corresponds to taking a = 0, b = 0, and f(0) = 0 in the Newton-Euler recursions. (3.5) is also

valid for the case when the Coriolis, centrifugal, and tip contact force terms have been subtracted

out of (3.1) resulting in T 0 = T �C � J�f(0). From the Newton-Euler factorization in (3.2) we see

that (3.5) is equivalent to

H�M��H��� = T 0 (3.6)

The action of H� on the joint angle accelerations �� is memoryless (nonrecursive) and results in a

vector of relative spatial accelerations between the manipulator links. The action of �� on H���

is equivalent to an anticausal base-to-tip recursion which propagates link relative accelerations

resulting in all the link spatial accelerations �. The combined action of �� and H� on ��, denoted

by ��H���, is equivalent to the recursion

8>>>>>>>>><
>>>>>>>>>:

�(n+ 1) = 0

for k = n � � � 1

�(k) = ��(k + 1; k)�(k + 1) +H�(k)��(k)

end loop
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The action of M on � = ��H��� is memoryless and leads to the D'Alembert forces col[M(k)�(k)],

which represent the net spatial forces acting on each of the links. The action of � on M� is

equivalent to a causal tip-to-base recursion of all the single-link D'Alembert forces to form the

link interaction spatial forces f = �M� acting on the manipulator links. Finally, the action of

H = diag[H(1); � � � ;H(n)] on f is to project the link spatial forces f(k) onto the joint axes H�(k)

to obtain the joint moments T = Hf = col[T (k)], T (k) = H(k)f(k). The combined actions of H,

�, and M on �, denoted by H�M�, is equivalent to the recursion

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

f(0) = 0

for k = 1 � � �n

f(k) = �(k; k � 1)f(k � 1) +M(k)�(k)

T (k) = H(k)f(k)

end loop

This establishes the equivalence between the Lagrangian and recursive Newton-Euler formulations

of manipulator dynamics (see Silver (1982)) and justi�es the use of the terminology \Newton-Euler

factorization" for (3.2).

The factorizations given by (3.2){(3.4) allow us to manipulate the dynamical equations

of motion in ways not previously apparent. The fact that each factor has an interpretation as a

causal, memoryless, or anticausal recursion of spatial quantities means that at any point of the

mathematical analysis one can interpret expressions in a deeply physical way or immediately pro-

duce an equivalent recursive algorithm. The true value of the spatial operator algebra applied to

manipulator dynamics will become clearer in the following sections. It will be shown that an impor-

tant alternative factorization to the Newton-Euler factorization ((3.2)) exists which results in new

causal, memoryless, anticausal operators with corresponding equivalent recursions. Also, we will

discuss the existence of very useful operator identities which allow one to manipulate kinematical

and dynamical equations in ways which would be otherwise impossible, all the while keeping the

correspondence of abstract mathematical expressions to equivalent implementable algorithms.

4 Operator Inversion of the Manipulator Mass Matrix

From (3.2), the well known fact that M is symmetric and positive de�nite can be easily seen. It

is also well-known that a symmetric positive de�nite operator is a covariance for some Gaussian

random process. A deeper result is that the factorization given by (3.2) shows that M has the

structure of a covariance of the output of a discrete-step causal �nite-dimensional linear system

whose input is a Gaussian white-noise process. This a very important fact, for it is well-known

( Rodriguez (1990a)) that such an operator can be factored and inverted e�ciently by the use of

standard techniques from �ltering and estimation theory. Applications of these techniques to the

7



manipulator mass matrix can be found in Rodriguez and Kreutz-Delgado (1992b) and are partially

summarized in this section.

First, we present an important alternative factorization to (3.2). To this end, we de�ne

D
4
= HPH�; G

4
= PH�D�1

,

E�
4
=

0
BBBBBBBBBBBBB@

0 0 � � � 0 0

�(2; 1) 0 � � � 0 0

0 �(3; 2) � � � 0 0

...
...

. . .
...

...

0 0 � � � �(n; n� 1) 0

1
CCCCCCCCCCCCCA

and

K
4
= E�G =

0
BBBBBBBBBBBBB@

0 0 � � � 0 0

K(2; 1) 0 � � � 0 0

0 K(3; 2) � � � 0 0

...
...

. . .
...

...

0 0 � � � K(n; n� 1) 0

1
CCCCCCCCCCCCCA

Note that K(i; i� 1) = �(i; i� 1)G(i� 1). P
4
= diag[P (1); � � � ; P (n)], where the diagonal elements

P (k) are obtained by the following causal discrete-step Riccati equation

8>>>>>>>>><
>>>>>>>>>:

P (1) =M(1)

for k = 2 � � �n

P (k) =  (k; k � 1)P (k � 1) �(k; k � 1) +M(k)

end loop

(4.1)

where

 (k; k � 1) = �(k; k � 1)[I �G(k � 1)H(k � 1)] (4.2)

P (k) is always symmetric positive de�nite and henceD, which is diagonal with the positive diagonal
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elements D(k) = H(k)P (k)H�(k), is always invertible.

In an analogous fashion to the de�nitions of � and E� we de�ne  and E below.

 
4
=

0
BBBBBBBBB@

I 0 0 � � � 0

 (2; 1) I 0 � � � 0

...
...

. . .
... 0

 (n; 1)  (n; 2) � � � � � � I

1
CCCCCCCCCA
; E 

4
=

0
BBBBBBBBBBBBB@

0 0 � � � 0 0

 (2; 1) 0 � � � 0 0

0  (3; 2) � � � 0 0

...
...

. . .
...

...

0 0 � � �  (n; n� 1) 0

1
CCCCCCCCCCCCCA

where  (k; k � 1) is given by (4.2),  (k; k) = I, and

 (i; j) =  (i; i � 1) (i � 1; i � 2) � � � (j + 1; j)

for i � j.

With these de�nitions, we can restate the de�nition in (4.2) as

E = E�(I �GH) = E� �KH (4.3)

The action of  on a composite spatial quantity y to form z =  y is equivalent to the following

causal tip-to-base recursion

8>>>>>>>>><
>>>>>>>>>:

z(0) = 0

for k = 1 � � �n

z(k) =  (k; k � 1)z(k � 1) + y(k)

end loop

Lemma 4.1 An alternative factorization of M = H�M��H� is the Innovations factorization

M = (I +H�K)D(I +H�K)� (4.4)

where I +H�K is causal (lower triangular), and D is memoryless, diagonal and invertible.

Proof: See Appendix.

The Innovations factorization (4.4) is equivalent to viewing the mass operator M as the

covariance of a �ltered innovations process, y. In stochastic estimation theory, the innovations
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representation is given by the causal operator I +H�K operating on an innovations process � =

diag[�(1); � � � ; �(n)] which can be taken to be an independent Gaussian sequence. The action of

(I +H�K) on �,

y = (I +H�K)�

is equivalent to the following causal tip-to-base recursion

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

bz(0) = 0; �(0) = 0

for k = 1 � � �n

bz(k) = �(k; k � 1)bz(k � 1) +K(k; k � 1)�(k � 1)

y(k) = H(k)bz(k) + �(k)

end loop

The importance of the innovations operator I + H�K is that it is trivially and causally

invertible and that its inverse is precisely a discrete-step Kalman �lter viewed as a whitening �lter.

Lemma 4.2 The causal (lower triangular) operators I +H�K and I � H K are mutual causal

inverses of each other

(I +H�K)�1 = I �H K (4.5)

Proof: See Appendix.

The relationship � = (I + H�K)�1y = (I � H K)y is equivalent to the following causal

tip-to-base recursion

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

bz(0) = 0; y(0) = 0

for k = 1 � � �n

bz(k) =  (k; k � 1)bz(k � 1) +K(k; k � 1)y(k � 1)

�(k) = �H(k)bz(k) + y(k)

end loop

This recursion is precisely a discrete-step Kalman �lter. Lemmas 4.1 and 4.2 result in:
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Lemma 4.3 The operator M�1 has the following anticausal-memoryless-causal operator factor-

ization

M
�1 = (I �H K)�D�1(I �H K) (4.6)

Application of Lemma 4.3 to the bias-free robot equations of motion given by (3.6) imme-

diately yields the following O(n) forward dynamics algorithm

Algorithm FD

T 0 = T �H�[M��a+ b+Bf(0)] (4.7)

�� = (I �H K)�D�1(I �H K)T 0 (4.8)

(4.7) represents an O(n) Newton-Euler recursion to remove the bias torques. (4.8) leads to the

following O(n) recursive forward dynamics algorithm

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

bz(0); T 0(0) = 0

for k = 1 � � �n

bz(k) =  (k; k � 1)bz(k � 1) +K(k; k � 1)T 0(k � 1)

�(k) = T 0(k)�H(k)bz(k)
�(k) = D�1(k)�(k)

end loop

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�(n+ 1) = 0

for k = n � � � 1

�(k) =  �(k + 1; k)�(k + 1) +H�(k)�(k)

��(k) = �(k)�K�(k + 1)�(k + 1; k)

end loop

It can be shown that the forward dynamics algorithm given by (4.7) and (4.8) is equivalent to

that of Featherstone (1983), but derived by vastly di�erent means. Similarly, it can be shown that

P (k) de�ned above is an articulated body inertia as de�ned by Featherstone (1983), but discovered

independently, and in a much di�erent context, in Rodriguez (1987a) .
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In addition to these operator factorizations, there exist many operator identities relating the

various operator factors. This greatly enhances the ability to obtain a number of important results.

For instance, it is shown in Rodriguez and Kreutz-Delgado (1992b) how these identities can be

used to obtain a variety of O(n) forward dynamics algorithms, all of them signi�cantly di�erent.

Indeed, among these algorithms are ones that do not require the separate computation of T 0 as in

(4.7), and directly take care of the terms involving a, b and f(0) in the recursive implementation of

(4.8). It is seen that the algorithm given by (4.7) and (4.8) above is but one in a whole class of such

algorithms available from an application of the spatial operator algebra. Furthermore, extensions

to closed-chain systems made up of several arms rigidly grasping a common rigid object can be

found in Rodriguez and Kreutz-Delgado (1992a) and in Rodriguez (1989b). The case of loose

grasp of non{rigid articulated objects is found in Jain, Kreutz and Rodriguez (1990a). General

closed-graph rigid multibody systems are analyzed in Rodriguez, Jain and Kreutz-Delgado (1992).

5 Applications of Spatial Operator Identities

Above, we have referred to the availability of identities relating elements of the spatial operator

algebra. In Rodriguez and Kreutz-Delgado (1992b), many such relationships are derived. In this

section, we will focus on the application of one such identity as representative of how these identities

can be used to perform high-level manipulations which result in new algorithms useful in dynamical

analysis and control. The identity of interest is

Lemma 5.1

(I �H K)H� = H (5.1)

Proof: See Appendix.

Application 1: Tip Force Correction Accelerations

From (3.1) it is evident that

�� = ��f +���

where

��f =M
�1(T � C); and ��� = �M

�1J�f(0)

can be determined from the forward dynamics algorithm (4.7) and (4.8). Our �rst application

of Lemma 5.1 is to �nd a simple relationship between tip contact forces and the resulting joint
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accelerations, ���, due solely to such tip forces. From (2.1) and (4.6)

��� = �(I �H K)�D�1(I �H K)H�Bf(0) (5.2)

Application of Lemma 5.1 then results in

��� = �(I �H K)�D�1H Bf(0) (5.3)

(5.3) is signi�cantly simpler than (5.2). It shows how the e�ect of the tip force propagates from

the tip to the base of a manipulator, producing link accelerations which then propagate from the

base to the tip. The algorithmic equivalent to (5.3) is given by

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

bz(1) =  (1; 0)f(0)

for k = 1 � � �n

bz(k) =  (k; k � 1)bz(k � 1)

�(k) = �D�1(k)H(k)bz(k)
end loop

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

�(n+ 1) = 0

for k = n � � � 1

�(k) =  �(k + 1; k)�(k + 1) +H�(k)�(k)

���(k) = �(k)�K�(k + 1; k)�(k + 1)

end loop

Application 2: E�ective Manipulator Inertia Re
ected to the Tip

The next application of Lemma 5.1 will be to produce an O(n) recursive algorithm (see

Rodriguez and Kreutz-Delgado (1992a)) for computing the Operational Space inertia matrix � of

Khatib (1985). Knowledge of �, together with the Operational Space Coriolis, centrifugal, and

gravity terms, enables the use of Operational Space Control - a form of feedback linearizing control

described in Khatib (1985). The ability to obtain the Operational Space dynamics recursively

avoids the need to have explicit analytical expressions which can be quite complex. Although we

will only discuss the recursive construction of the Operational Space inertia matrix �, the entire

Operational Space dynamics can be computed via O(n) recursions using the techniques of the

spatial operator algebra, allowing for recursive implementation of Operational Space Control.
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If the dynamics of an n-link manipulator are re
ected to the tip locations, the resulting

manipulator inertia has the form

� = (JM�1J�)�1

For a manipulator whose workspace is R6, the inversion of the 6 � 6 operator JM�1J� entails a

constant cost which is independent of the number of manipulator links. The real work is to obtain

an e�cient algorithm for the construction of 
(0)
4
= JM�1J�. (2.1) and (4.6) reveal that


(0) = JM�1J� = B���H�(I �H K)�D�1(I �H K)H�B (5.4)

Application of Lemma 5.1 to (5.4) immediately results in


(0)
4
= JM�1J� = B� �H�D�1H B (5.5)

It is quite straightforward (see Rodriguez and Kreutz-Delgado (1992a) and

Rodriguez, Jain and Kreutz-Delgado (1992)) to show that the following O(n) anticausal base-to-tip

recursive algorithm is equivalent to (5.5):

8>>>>>>>>><
>>>>>>>>>:


(n+ 1) = 0

for k = n � � � 1


(k) =  �(k + 1; k)
(k + 1) (k + 1; k) +H�(k)D�1(k)H(k)

end loop


(0) = ��(1; 0)
(1)�(1; 0)

Application 3: Closed Chain Forward Dynamics

Figure 1a represents a closed chain of rigid bodies connected by revolute joints which are

all actuated. Figure 1a can be viewed as a graph whose nodes are links and whose edges are joints.

A spanning tree can be found for this graph which is equivalent to cutting the chain at some point,

say point c of Figure 1a. The root of this tree is indicated by the arrow.

Imagine that the chain is physically cut at c and designate the root link to be the \Base."

This results in Figure 1b. For simplicity, assume that the base is immobile. This assumption results

in no real loss of generality { see, e.g., ref. Rodriguez and Kreutz-Delgado (1992a). Cutting the

chain has resulted in arms 1 and 2 with n1 and n2 links respectively. We can now assign the

causal/anticausal directions to each arm. (Note that this assignment propagated back to Fig. 1a

corresponds to the existence of a directed graph).
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The fact that the tips of arms 1 and 2 are always constrained to remain in contact corre-

sponds to the boundary conditions

f2(0) = �f1(0) � f(0) (5.6)

�1(0) = �2(0) (5.7)

With (5.6), the dynamical behavior of arms 1 and 2 is given by

M1
��1 + C1 = T1 + J�

1
f(0) ; M2

�� + C2 = T2 � J�
2
f(0) (5.8)

subject to (5.7). Looking �rst at arm 1,

��1 = M
�1

1
(T1 � C1) +M

�1

1
J�
1
f(0) = ��1f +���1

where

��1f = M
�1

1
(T1 � C1) = [I �H K]�D�1[I �H K](T � C)

and ���1 = M
�1

1
J�1f(0) = [I �H K]�D�1H Bf(0) (5.9)

Note that ��1f is the \free" joint acceleration i.e., the joint acceleration that would exist if the tip

were unconstrained, while ���1 is the correction joint acceleration for arm 1 due to the presence

of the tip constraint force f(0). While ��1f can be obtained using the recursive O(n1) single arm

forward dynamics algorithms, so can ���1 once f(0) is determined. The same story holds for arm

2 also.

Since V1(0) = J1 _�1,

�1(0) = _V1(0) = J1��1 + J1 _�1 (5.10)

It then follows from (5.9) and (5.10) that

�1(0) = �1f (0) + J1���1; where �1f (0) = J1��1f + _J1� _�1

= �1f (0) + ��1
1
f(0); where ��1

1

4
= J1M

�1

1
J�1

Similarly,

�2(0) = �2f (0)� ��1
2
f(0) where ��1

2

4
= J2M

�1

2
J�2
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Then, from the boundary condition constraint in (5.7)

f(0) = �c[�2f (0) � �1f (0)] where ��1c � ��1
1

+��1
2

(5.11)

As discussed previously, ��1
1

and ��1
2

can be found via O(n1) and O(n2) recursive algorithms

respectively. Noting that the inversion of ��1c 2 R6�6 involves a 
at cost independent of n1 and n2,

we see that we have produced an O(n1 + n2) recursive algorithm for �nding the forward dynamics

of the system of Figure 1a. �c is the e�ective inertia of the closed chain system re
ected to point

c.

For additional applications of the spatial operator algebra similar to those of this section,

see for example Rodriguez and Scheid (1987) and Rodriguez and Kreutz-Delgado (1992a). In

Rodriguez and Scheid (1987) an operator expression for (J�J)�1 is obtained for nonredundant arms

which is used in a recursive solution to the manipulator inverse kinematics problem.

Rodriguez and Kreutz-Delgado (1992a) contains an extensive listing of additional operator identi-

ties. Also shown there is a method to easily �nd the e�ective inertia matrix for a system consisting

of several arms grasping a commonly held rigid body.

6 Research Applications of the Spatial Operator Algebra

The ability to adequately model rigid bodies in arbitrary con�gurations and states of contact is

important for the development of e�ective CAD-based motion planners. In situations involving

remote multiarm robotic servicing of a multibody system (such as a space station), manipulator

arms, tools, objects, and the environment will be constantly forming new and changing con�gu-

rations of interaction. The topology of such con�gurations will in general be quite complex. The

special, representative case of several arms rigidly grasping a commonly held rigid body is stud-

ied in Rodriguez (1986), Kreutz and Lokshin (1988) and Kreutz and Wen (1988), both from the

control and the modeling perspectives. In these references, several alternative representations for

the dynamic equations describing this case are derived. An important quantity for understanding

the behavior of a closed- chain system is seen to be the e�ective inertia matrix, which is just the

natural generalization of the Khatib Operational Space inertia matrix for a single serial link arm.

As our closed chain example has shown, a key step in obtaining the e�ective inertia matrix is

understanding how a new e�ective inertia is formed when a single arm grasps an object which may

be a simple single rigid body or a complex multibody mechanism. The solution is best obtained not

by recomputing the e�ective inertia for the new arm-object system from scratch, but by including

the e�ect of the object as an incremental change to the solution of the dynamics problem. To add

the e�ect of the object, one �rst computes the contact forces at the points of contact between the

arm and the object. This is achieved by an approach that is analogous to combining two distinct

state estimates each of which has a built-in error with a known \covariance" (i.e., articulated body

inertia) (see Rodriguez (1989b)). This perspective enables the generation of e�cient recursive

algorithms for computing the e�ective inertia of a system of several arms grasping a common object
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which is of complexity O(n) + O(`), when no arm is at a kinematical singularity. More generally,

O(n) +O(`3) algorithms can be developed, where n is the total number of links in the system, and

` is the number of arms grasping the object (see Rodriguez and Kreutz-Delgado (1992a)).

For the model of several rigid-link serial arms grasping a common object to be well-posed, in

the sense that unique system accelerations and unique contact forces result for given applied joint

moments, it can be shown that the inverse of the e�ective inertia must be full rank. This enables the

determination of unique contact forces, which, in turn, are su�cient for computing accelerations.

It is important that this full rank condition be satis�ed everywhere in the workspace if a dynamical

simulation is to be well-posed for all possible motions. In Rodriguez, Milman and Kreutz (1988), it

is shown that the property of well-posedness throughout the workspace is generic with respect to the

base locations of the arms. Thus, almost surely, \with probability one", any set of base locations for

the arms will result in a closed-chain system which is well-posed for simulation purposes. Assuming

well-posedness, the techniques of the spatial algebra allow the joint accelerations and contact forces

of a multiarm/object-grasp system to be computed from applied joint moments by means of an

O(n) +O(`) recursive algorithm.

Most of the multibody results mentioned above assume that a rigid attachment has been

made between objects as they come in contact. Of course, this is a highly limiting assumption which

must be relaxed in realistic problem domains. The algorithms described here for the dynamics of

manipulators in rigid grasp of a rigid object have been extended in Jain, Kreutz and Rodriguez (1990b)

to the case where the grasp is loose, and where the task object is non-rigid and has internal degrees

of freedom. The grasp constraints are allowed to be either holonomic or nonholonomic. This in-

cludes: possibly one-sided contacts, such as line contacts with friction; point contacts with friction;

\soft-�nger" contacts; and sliding contacts, such as occur in hybrid force/position control.

Notice that the factorization (4.4) can be interpreted as a change of basis which results

in a \decoupled" (i.e. diagonal) inertia matrix D. This key insight has been used in reference

Rodriguez (1989a) to obtain highly decoupled equations of motion in terms of the \innovations"

� = D�
1

2 (I �H K)T

and the \residuals"

� = D
1

2 (I +H�K)� _�

The resulting equations of motion are of the form

_� + �(�; �) = �

The diagonalized innovations form of the dynamical equations result in a signi�cant simpli�cation

of dynamic analysis. Application of Lyapunov stability theory for control design is particularly

appropriate when manipulator dynamics are described in this diagonal innovations canonical form
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and results in new forms of decoupled control. The analysis is simpli�ed as a result of the di-

agonalization of the kinetic energy term which is contained in many useful Lyapunov candidate

functions.

In Kreutz and Lokshin (1988), Rodriguez, Milman and Kreutz (1988), feedback lineariz-

ing type control laws for controlling a system of multiple arms grasping a common object are derived.

These controllers enable the simultaneous control of con�guration as well as internal forces either

to regulate the contact forces imparted to the held object or for load-balancing among the arms.

Via the spatial operator algebra, it is straightforward to obtain O(n) recursively implementable

forms of these control laws.

Recently, new forms of manipulator control laws have been derived via the use of Lyapunov

stability theory (see Wen and Bayard (1988), Wen, Kreutz and Bayard (1988)). Work is underway

to extend these results to the closed-chain case (see Wen and Kreutz (1988)). A straightforward

application of the recursive Newton-Euler algorithm will not work due to the need to distinguish

in a complex manner the placing of desired and actual joint velocities into the bilinear Corio-

lis/centrifugal terms. For this reason, exact analytical expressions of these controllers have been

required to date. Recently, however, we have applied the techniques of the spatial operator algebra

to obtain O(n) recursive implementations of these new forms of control laws.

The use of the spatial operator algebra for dynamic modeling and algorithms for arbi-

trary tree topology multibody sytems can be found in Rodriguez (1987b), for arbitrary graph

topology rigid multibody systems in Rodriguez, Jain and Kreutz-Delgado (1992), and for 
exible

manipulators in Rodriguez (1990b). Other application areas include: motion and force planning

for manipulators in Rodriguez (1989c); algorithms for manipulators with gear{driven joints in

Jain and Rodriguez (1990a); computation of robot linearized robot dynamics models in

Jain and Rodriguez (1990b); operational space control in Kreutz-Delgado, Jain and Rodriguez (1990);

and as a unifying framework for multibody dynamics in Jain (1991).

One of the most important features of the spatial operator algebra is that it is easy

( Rodriguez and Kreutz-Delgado (1992b)) to develop hierarchical software for implementation of

recursive algorithms. The complexity of the algorithms are not visible to the user, because only

spatial operator expressions are required to do the computer programming. This simpli�es software

prototyping without increasing computational complexity. It also mades simulation programs arm{

independent because the operator statements and the computer program architecture do not vary

in going from one arm to another arm.

7 Conclusions

A new spatial operator algebra for describing the kinematical and dynamical behavior of multibody

systems has been presented. The algebra makes it easy to see the relationship between abstract

expressions and recursive algorithms which propagate spatial quantities from link-to-link. One
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consequence of the operator algebra is that the equivalence between the Lagrangian and Newton-

Euler formulations of dynamics is made transparent. Abstract dynamical equations of motion,

such as arise from a Lagrangian analysis, can be reinterpreted as equivalent operator formulated

equations.

Important elements of the spatial operator algebra were presented, in particular those which

arise from natural factorizations of critical kinematical and dynamical quantities. These factoriza-

tions allow one to manipulate equations of motion in previously unknown ways. This is particularly

true given the existence of important identities and inversions which relate the spatial operators.

A key result is the operator factorization and inversion of the manipulator mass matrix given by

Lemma 4.1 and Lemma 4.3. Various applications of the spatial algebra to kinematics, dynamics,

and control were presented, including the development of a recursive forward dynamics algorithm

which essentially comes for free once the key step of obtaining the innovations factorization (4.2)

is carried out.

The factorizations made possible by the spatial operator algebra are model{based, in the

sense that the physical model of the manipulator itself is used to conduct every computational

step. Hence, every computational step has a physical interpretation. Numerical errors are easy to

detect because the results of any given computation can easily be checked against physical intuition.

These model{based factorizations are quite distinct from the more traditional factorizations, such

as Cholesky decomposition, which are rooted in numerical analysis and for which there is not

typically a one{to{one physical interpretation for every computational step.

The potential payo� of the spatial algebra in terms of providing a framework which can

manage the complexity associated with multibody systems is large. For example, compare the

abstract simplicity of the development of the forward dynamics algorithm in this paper with those

developed by other means which often require extensive notation and development. In Sec. 6, we

touched on some of the other areas where the spatial operator algebra is being applied. We believe

that this algebra can provide a complete framework for describing multibody systems. This will

greatly aid in the ultimate generation of computer programs which can model the behavior of the

dynamical world by the use of a suitable hierarchy of abstraction.
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A Appendix

We �rst establish the following identity.
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Lemma A.1  �1 = ��1 +KH

Proof: It is easy to verify that ��1 = (I � E�) and  
�1 = (I � E ). Then,

 �1 = I � E = (I � E�) +KH = ��1 +KH

Proof of Lemma 4.1: From (4.1) it follows that

M = P � E PE
�

 

However it is easy to verify that �P�� = �P , where �
4
= I �GH. And so using (4.3), and the fact

that ~�
4
= �� I = �E�,

M = P � E PE
�

� = P � E�PE
�

� +KDK� =) �M�� = P + ~�P + P ~�� + �KDK���

=) M = H�M��H� = H[P + ~�P + P ~�� + �KDK���]H�

= D +H�KD +DK���H� +H�KDK���H� = [I +H�K]D[I +H�K]�

Proof of Lemma 4.2: Using a standard matrix identity followed by Lemma A.1, we have that

[I +H�K]�1 = I �H�[I +KH�]�1K = I �H�[ �1�]�1K = I �H K

Proof of Lemma 5.1:

(I �H K)H� = H(I �  KH)�

From Lemma A.1 it follows that (I �  KH) =  ��1, and using this, the result follows.
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